430 research outputs found

    Electrolysis of simulated lunar melts

    Get PDF
    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition

    Investigation of Flow Conditioners for Compact Jet Engine Simulator Rig Noise Reduction

    Get PDF
    The design requirements for two new Compact Jet Engine Simulator (CJES) units for upcoming wind tunnel testing lead to the distinct possibility of rig noise contamination. The acoustic and aerodynamic properties of several flow conditioner devices are investigated over a range of operating conditions relevant to the CJES units to mitigate the risk of rig noise. An impinging jet broadband noise source is placed in the upstream plenum of the test facility permitting measurements of not only flow conditioner self-noise, but also noise attenuation characteristics. Several perforated plate and honeycomb samples of high porosity show minimal self-noise but also minimal attenuation capability. Conversely, low porosity perforated plate and sintered wire mesh conditioners exhibit noticeable attenuation but also unacceptable self-noise. One fine wire mesh sample (DP450661) shows minimal selfnoise and reasonable attenuation, particularly when combined in series with a 15.6 percent open area (POA) perforated plate upstream. This configuration is the preferred flow conditioner system for the CJES, providing up to 20 dB of broadband attenuation capability with minimal self-noise

    Electrolytic smelting of lunar rock for oxygen, iron, and silicon

    Get PDF
    Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source

    Report of the Terrestrial Bodies Science Working Group. Volume 4: The moon

    Get PDF
    A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used

    Preparation of OC14S, O18CS, OCS33, and CH3Cl36

    Get PDF
    In connection with a microwave absorption study of the nuclear spins of isotopes by Professor A. Roberts, formerly of the Physics Department of this University, we were asked to prepare samples of OC14S, O18CS, OCS33, and of CH3Cl36, starting with small quantities of the materials containing the desired isotopes. We believe that the methods employed in the synthesis of these compounds may be of use to other investigators

    Vertical Drop Test and Simulation of a Fokker F-28 Fuselage Section

    Get PDF
    In March 2017, a vertical drop test of a 3.048-m(10-ft) section of a Fokker F-28 aircraft was conducted as a part of a joint NASA/FAA effort to investigate the performance of transport aircraft under realistic crash conditions. The section was configured with two rows of aircraft seats, in a triple-double configuration. A total of ten Anthropomorphic Test Devices (ATDs) were secured in the seats using standard seat belt restraints. The section was also configured with luggage in the cargo hold. Two hat racks were added, each with mass loading of 37.2-kg per linear meter (25-lb/ft). The drop test was performed at the Landing and Impact Research facility located at NASA Langley Research Center in Hampton, Virginia. The planned impact velocity was 9.144-m/s (360-in/s) onto soil. A second objective was to assess the capabilities of finite element simulations to predict the test response. A finite element model was developed for execution in LS-DYNA, a commercial explicit nonlinear transient dynamic code. The model contained accurate representations of the airframe structure, the hat racks and hat rack masses, the floor and seat tracks, and the luggage in the cargo hold. Concentrated masses were used to represent the inertial properties of the seats, restraints, and ATD occupants. The model was executed to generate analytical predictions of airframe responses, which were compared with test data to validate the model

    Acoustic Characterization of Compact Jet Engine Simulator Units

    Get PDF
    Two dual-stream, heated jet, Compact Jet Engine Simulator (CJES) units are designed for wind tunnel acoustic experiments involving a Hybrid Wing Body (HWB) vehicle. The newly fabricated CJES units are characterized with a series of acoustic and flowfield investigations to ensure successful operation with minimal rig noise. To limit simulator size, consistent with a 5.8% HWB model, the CJES units adapt Ultra Compact Combustor (UCC) technology developed at the Air Force Research Laboratory. Stable and controllable operation of the combustor is demonstrated using passive swirl air injection and backpressuring of the combustion chamber. Combustion instability tones are eliminated using nonuniform flow conditioners in conjunction with upstream screens. Through proper flow conditioning, rig noise is reduced by more than 20 dB over a broad spectral range, but it is not completely eliminated at high frequencies. The low-noise chevron nozzle concept designed for the HWB test shows expected acoustic benefits when installed on the CJES unit, and consistency between CJES units is shown to be within 0.5 dB OASPL

    STORMSeq: An Open-Source, User-Friendly Pipeline for Processing Personal Genomics Data in the Cloud

    Get PDF
    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately 2and5–10hourstoprocessafullexomesequenceand2 and 5–10 hours to process a full exome sequence and 30 and 3–8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2
    • …
    corecore