2,591 research outputs found
IUE observations of Fe 2 galaxies
Repeated observations of the Seyfert 1 galaxies I Zw 1 and II Zw 136, which have very strong Fe II emission lines in the optical region, were made at low resolution with the IUE Satellite. The ultraviolet spectra are very similar: both are variable and show broad emission features of Fe II (especially the UV multiplets 1, 33, 60, 62, and 63) as well as the emission lines usually strong in Seyferts and quasars. The data strongly support the hypothesis that the optical Fe II emission lines are primarily due to collisional excitation and that resonance fluorescence makes only a minor contribution to the excitation of these lines
Gravitational waves from rapidly rotating neutron stars
Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed
as an interesting source of gravitational waves. In this chapter we present
estimates of the gravitational wave emission for various scenarios, given the
(electromagnetically) observed characteristics of these systems. First of all
we focus on the r-mode instability and show that a 'minimal' neutron star model
(which does not incorporate exotica in the core, dynamically important magnetic
fields or superfluid degrees of freedom), is not consistent with observations.
We then present estimates of both thermally induced and magnetically sustained
mountains in the crust. In general magnetic mountains are likely to be
detectable only if the buried magnetic field of the star is of the order of
G. In the thermal mountain case we find that gravitational
wave emission from persistent systems may be detected by ground based
interferometers. Finally we re-asses the idea that gravitational wave emission
may be balancing the accretion torque in these systems, and show that in most
cases the disc/magnetosphere interaction can account for the observed spin
periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the
Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert
Generalized Rate-Code Model for Neuron Ensembles with Finite Populations
We have proposed a generalized Langevin-type rate-code model subjected to
multiplicative noise, in order to study stationary and dynamical properties of
an ensemble containing {\it finite} neurons. Calculations using the
Fokker-Planck equation (FPE) have shown that owing to the multiplicative noise,
our rate model yields various kinds of stationary non-Gaussian distributions
such as gamma, inverse-Gaussian-like and log-normal-like distributions, which
have been experimentally observed. Dynamical properties of the rate model have
been studied with the use of the augmented moment method (AMM), which was
previously proposed by the author with a macroscopic point of view for
finite-unit stochastic systems. In the AMM, original -dimensional stochastic
differential equations (DEs) are transformed into three-dimensional
deterministic DEs for means and fluctuations of local and global variables.
Dynamical responses of the neuron ensemble to pulse and sinusoidal inputs
calculated by the AMM are in good agreement with those obtained by direct
simulation. The synchronization in the neuronal ensemble is discussed.
Variabilities of the firing rate and of the interspike interval (ISI) are shown
to increase with increasing the magnitude of multiplicative noise, which may be
a conceivable origin of the observed large variability in cortical neurons.Comment: 19 pages, 9 figures, accepted in Phys. Rev. E after minor
modification
On the Quasi-Periodic Oscillations of Magnetars
We study torsional Alfv\'en oscillations of magnetars, i.e., neutron stars
with a strong magnetic field. We consider the poloidal and toroidal components
of the magnetic field and a wide range of equilibrium stellar models. We use a
new coordinate system (X,Y), where ,
and is the radial component of the magnetic
field. In this coordinate system, the 1+2-dimensional evolution equation
describing the quasi-periodic oscillations, QPOs, see Sotani et al. (2007), is
reduced to a 1+1-dimensional equation, where the perturbations propagate only
along the Y-axis. We solve the 1+1-dimensional equation for different boundary
conditions and open magnetic field lines, i.e., magnetic field lines that reach
the surface and there match up with the exterior dipole magnetic field, as well
as closed magnetic lines, i.e., magnetic lines that never reach the stellar
surface. For the open field lines, we find two families of QPOs frequencies; a
family of "lower" QPOs frequencies which is located near the X-axis and a
family of "upper" frequencies located near the Y-axis. According to Levin
(2007), the fundamental frequencies of these two families can be interpreted as
the turning points of a continuous spectrum. We find that the upper frequencies
are constant multiples of the lower frequencies with a constant equaling 2n+1.
For the closed lines, the corresponding factor is n+1 . By these relations, we
can explain both the lower and the higher observed frequencies in SGR 1806-20
and SGR 1900+14.Comment: 8 pages, 7 figure
Helping education undergraduates to use appropriate criteria for evaluating accounts of motivation
The aim of the study was to compare students in a control group with those in a treatment group with respect to evaluative comments on psychological accounts of motivation. The treatment group systematically scrutinized the nature and interpretation of evidence that supported different accounts, and the assumptions, logic, coherence and clarity of accounts. Content analysis of 74 scripts (using three categories) showed that the control group students made more assertions than either evidential or evaluative points, whereas the treatment group used evaluative statements as often as they used assertion. The findings provide support for privileging activities that develop understanding of how knowledge might be contested, and suggest a need for further research on pedagogies to serve this end. The idea is considered that such understanding has a pivotal role in the development of critical thinking
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Conceptual learning : the priority for higher education
The common sense notion of learning as the all-pervasive acquisition of new behaviour and knowledge, made vivid by experience, is an incomplete characterisation, because it assumes that the learning of behaviour and the learning of knowledge are indistinguishable, and that acquisition constitutes learning without reference to transfer. A psychological level of analysis is used to argue that conceptual learning should have priority in higher education
An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces
Explicit expressions are given for the actions and radial matrix elements of
basic radial observables on multi-dimensional spaces in a continuous sequence
of orthonormal bases for unitary SU(1,1) irreps. Explicit expressions are also
given for SO(N)-reduced matrix elements of basic orbital observables. These
developments make it possible to determine the matrix elements of polynomial
and a other Hamiltonians analytically, to within SO(N) Clebsch-Gordan
coefficients, and to select an optimal basis for a particular problem such that
the expansion of eigenfunctions is most rapidly convergent.Comment: 19 pages, 8 figure
Diffusing-wave spectroscopy of nonergodic media
We introduce an elegant method which allows the application of diffusing-wave
spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on
the idea that light transmitted through a sandwich of two turbid cells can be
considered ergodic even though only the second cell is ergodic. If absorption
and/or leakage of light take place at the interface between the cells, we
establish a so-called "multiplication rule", which relates the intensity
autocorrelation function of light transmitted through the double-cell sandwich
to the autocorrelation functions of individual cells by a simple
multiplication. To test the proposed method, we perform a series of DWS
experiments using colloidal gels as model nonergodic media. Our experimental
data are consistent with the theoretical predictions, allowing quantitative
characterization of nonergodic media and demonstrating the validity of the
proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.
Gender Differences in Demographic and Clinical Correlates among Veterans with Musculoskeletal Disorders
Background
Studies suggest that women may be at greater risk for developing chronic pain and pain-related disability.
Methods
Because musculoskeletal disorders (MSD) are the most frequently endorsed painful conditions among veterans, we sought to characterize gender differences in sociodemographic and clinical correlates among veterans upon entry into Veterans Health Administration's Musculoskeletal Disorders Cohort (n = 4,128,008).
Results
Women were more likely to be younger, Black, unmarried, and veterans of recent conflicts. In analyses adjusted for gender differences in sociodemographics, women were more likely to have diagnoses of fibromyalgia, temporomandibular disorders, and neck pain. Almost one in five women (19.4%) had more than one MSD diagnosis, compared with 15.7% of men; this higher risk of MSD multimorbidity remained in adjusted analyses. Adjusting for sociodemographics, women with MSD were more likely to have migraine headache and depressive, anxiety, and bipolar disorders. Women had lower odds of cardiovascular diseases, substance use disorders, and several MSDs, including back pain conditions. Men were more likely to report “no pain” on the pain intensity Numeric Rating Scale, whereas more women (41%) than men (34%) reported moderate to severe pain (Numeric Rating Scale 4+).
Conclusions
Because women veterans are more likely to have conditions such as fibromyalgia and mental health conditions, along with greater pain intensity in the setting of MSD, women-specific pain services may be needed
- …
