162 research outputs found
Incorporation of metabolic activation potentiates cyclophosphamide-induced DNA damage response in isogenic DT40 mutant cells
Elucidating the DNA repair pathways that are activated in the presence of genotoxic agents is critical to understand their modes of action. Although the DT40 cell-based DNA damage response (DDR) assay provides rapid and sensitive results, the assay cannot be used on genotoxic compounds that require metabolic activation to be reactive. Here, we applied the metabolic activation system to a DDR and micronucleus (MN) assays in DT40 cells. Cyclophosphamide (CP), a well-known cross-linking agent requiring metabolic activation, was preincubated with liver S9 fractions. When DT40 cells and mutant cells were exposed to the preactivated CP, CP caused increased cytotoxicity in FANC-, RAD9-, REV3- and RAD18-mutant cells compared to isogenic wild-type cells. We then performed a MN assay on DT40 cells treated with preactivated CP. An increase in the MN was observed in REV3- and FANC-mutant cells at lower concentrations of activated CP than in the parental DT40 cells. These results demonstrated that the incorporation of metabolic preactivation system using S9 fractions significantly potentiates DDR caused by CP in DT40 cells and their mutants. In addition, our data suggest that the metabolic preactivation system for DDR and MN assays has a potential to increase the relevance of this assay to screening various compounds for potential genotoxicity
A semi-automated non-radiactive system for measuring recovery of RNA synthesis and unscheduled DNA synthesis using ethynyluracil derivatives
Nucleotide excision repair (NER) removes the major UV-photolesions from cellular DNA. In humans, compromised NER activity is the cause of several photosensitive diseases, one of which is the skin-cancer predisposition disorder, xeroderma pigmentosum (XP). Two assays commonly used in measurement of NER activity are ‘unscheduled DNA synthesis (UDS)’, and ‘recovery of RNA synthesis (RRS)’, the latter being a specific measure of the transcription-coupled repair sub-pathway of NER. Both assays are key techniques for research in NER as well as in diagnoses of NER-related disorders. Until very recently, reliable methods for these assays involved measurements of incorporation of radio-labeled nucleosides. We have established non-radioactive procedures for determining UDS and RRS levels by incorporation of recently developed alkyne-conjugated nucleoside analogues, 5-ethynyl-2′-deoxyuridine (EdU) and 5-ethynyuridine (EU). EdU and EU are respectively used as alternatives for 3H-thymidine in UDS and for 3H-uridine in RRS. Based on these alkyne-nucleosides and an integrated image analyser, we have developed a semi-automated assay system for NER-activity. We demonstrate the utility of this system for NER-activity assessments of lymphoblastoid samples as well as primary fibroblasts. Potential use of the system for large-scale siRNA-screening for novel NER defects as well as for routine XP diagnosis are also considered
<html>Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in <i>FANC</i>-deficient cells</html>
Isopropyl methanesulfonate (IPMS) is the most potent genotoxic compound among methanesulfonic acid esters. The genotoxic potential of alkyl sulfonate esters is believed to be due to their alkylating ability of the O6 position of guanine. Understanding the primary repair pathway activated in response to IPMS-induced DNA damage is important to profile the genotoxic potential of IPMS. In the present study, both chicken DT40 and human TK6 cell-based DNA damage response (DDR) assays revealed that dysfunction of the FANC pathway resulted in higher sensitivity to IPMS compared to EMS or MMS. O6-alkyl dG is primarily repaired by methyl guanine methyltransferase (MGMT), while isopropyl dG is less likely to be a substrate for MGMT. Comparison of the cytotoxic potential of IPMS and its isomer n-propyl methanesulfonate (nPMS) revealed that the isopropyl moiety avoids recognition by MGMT and leads to higher cytotoxicity. Next, the micronucleus (MN) assay showed that FANC deficiency increases the sensitivity of DT40 cells to MN induction by IPMS. Pretreatment with O6-benzyl guanine (OBG), an inhibitor of MGMT, increased the MN frequency in DT40 cells treated with nPMS, but not IPMS. Lastly, IPMS induced more double strand breaks in FANC-deficient cells compared to wild-type cells in a time-dependent manner. All together, these results suggest that IPMS-derived O6-isopropyl dG escapes recognition by MGMT, and the unrepaired DNA damage leads to double strand breaks, resulting in MN induction. FANC, therefore, plays a pivotal role in preventing MN induction and cell death caused by IPMS
Development of an Automatic Dishwashing Robot System
Proceedings of The 2009 IEEE International Conference on Mechatronics and Automation, August 9 - 12, Changchun, Chin
Influence of post-disaster evacuation on incidence of hyperuricemia in residents of Fukushima Prefecture: the Fukushima Health Management Survey
Aim: After the Great East Japan Earthquake, over 160, 000 residents in Fukushima Prefecture were forced to evacuate the area around the Fukushima Daiichi power plant following nuclear accident there. Health problems in these evacuees have since become a major issue. We have examined the association between evacuation and incidence of hyperuricemia among residents in Fukushima. Methods: We conducted a cohort study of residents aged 40–90 years without hyperuricemia at the time of the Fukushima disaster. Among 8173 residents who met the inclusion criteria before the disaster, 4789 residents (men: 1971, women: 2818; follow-up duration: 1.38 years; and follow-up rate: 58.6%) remained available for follow-up examinations at the end of March 2013. The main endpoint was incidence of hyperuricemia, defined by the Japanese committee guidelines, using local health data from before and after the disaster. We divided participants by evacuation status and compared outcomes between groups. Using a logistic regression model, we estimated the odds ratio for incidence of hyperuricemia, adjusting for potential confounders, age, gender, waist circumference, physical activity, and alcohol consumption. Results: Incidence of hyperuricemia was higher in evacuees (men 10.1%; women 1.1%) than in non-evacuees (men 7.4%, women 1.0%). Evacuees had higher body mass index, waist circumference, triglycerides, LDL-cholesterol, fasting plasma glucose, HbA1c, and lower HDL-cholesterol after the disaster than non-evacuees. We found that evacuation was associated with incidence of hyperuricemia (adjusted odds ratio: 1.38; 95% confidence interval: 1.03-1.86). Conclusion: This is the first study to demonstrate an association between evacuation after a disaster and increased incidence of hyperuricemia
Validation of the Burden Index of Caregivers (BIC), a multidimensional short care burden scale from Japan
BACKGROUND: We constructed a concise multidimensional care burden scale that reflects circumstances unique to Japan, with a focus on intractable neurological diseases. We surveyed 646 family caregivers of patients with intractable neurological diseases or stroke using 28 preliminary care burden scale items obtained from qualitative research. The results were used to finalize the feeling of care burden scale (BIC: burden index of caregivers), and verify its reliability and validity. METHODS: The survey was conducted among caregivers providing home health care to patients with intractable neurological diseases (PD [Parkinson's disease], SCD [spinocerebellar degeneration], MSA [multiple system atrophy], and ALS [amyotrophic lateral sclerosis]) or CVA (cerebrovascular accident) using a mailed, self-administered questionnaire between November, 2003 and May, 2004. RESULTS: Response rates for neurological and CVA caregivers were 50% and 67%, respectively, or 646 in total (PD, 279; SCD, 78; MSA, 39; ALS, 30; and CVA, 220). Item and exploratory factor analyses led to a reduction to 11 items, comprising 10 items from the 5 domains of time-dependent burden, emotional burden, existential burden, physical burden, and service-related burden; and 1 item on total burden. Examination of validity showed a moderate correlation between each domain of the BIC and the SF-8 (Health related quality of life scale, Short Form-8), while the correlation coefficient of the overall BIC and CES-D was 0.62. Correlation between the BIC and ZBI, a preexisting care burden scale, was high (r = 0.84), while that with the time spent on providing care was 0.47. The ICC (Intraclass correlation coefficient) by test-retest reliability was 0.83, and 0.68 to 0.80 by individual domain. CONCLUSION: These results show that the BIC, a new care burden scale comprising 11 items, is highly reliable and valid
Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRα immune cell receptor
金沢大学医薬保健研究域薬学系Before entering host cells, herpes simplex virus-1 uses its envelope glycoprotein B to bind paired immunoglobulin-like type 2 receptor α (PILRα) on immune cells. PILRα belongs to the Siglec (sialic acid (SA)-binding immunoglobulin-like lectin)- like family, members of which bind SA. PILRα is the only Siglec member to recognize not only the sialylated O-linked sugar T antigen (sTn) but also its attached peptide region. We previously determined the crystal structure of PILRα complexed with the sTn-linked glycopeptide of glycoprotein B, revealing the simultaneous recognition of sTn and peptide by the receptor. However, the contribution of each glycopeptide component to PILRα binding was largely unclear. Here, we chemically synthesized glycopeptide derivatives and determined the thermodynamic parameters of their interaction with PILRα. We show that glycopeptides with different sugar units linking SA and peptides (i.e. "GlcNAc-Type" and "deoxy- GlcNAc-Type" glycopeptides) have lower affinity and more enthalpy-driven binding than the wild type (i.e. GalNAc-Type glycopeptide). The crystal structures of PILRα complexed with these glycopeptides highlighted the importance of stereochemical positioning of the O4 atom of the sugar moiety. These results provide insights both for understanding the unique O-glycosylated peptide recognition by the PILRα and for the rational design of herpes simplex virus-1 entry inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc
Somatic cell reprogramming-free generation of genetically modified pigs
Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs
- …