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Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear
transfer technique; however, this approach requires complexmicromanipulation techniques and sometimes increases
the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As
a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the intro-
duction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing
by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted genedisruption andwas validated by the
efficient production ofMyostatinmutant pigs. Because GEEP does not require the complex methods associated with
micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs.
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INTRODUCTION

Pigs are considered as one of the best animals for generating models of
human diseases and for providing organs for xenotransplantation
(1–3). For these purposes, the genetic modification of genes involv-
ing disease and immunorejection and of porcine endogenous retro-
viruses (4) with possible transmission after the implantation is essential
(5). Currently, genetic modification in pigs has been mainly achieved
by somatic cell nuclear transfer (SCNT) after the generationof engineered
donor somatic cells (6–9). The SCNT technique is associated with
technological limitations that prevent their widespread use in pigs
(7, 10). In addition, the SCNT-dependent strategy sometimes results
in incomplete epigenetic reprogramming (11–13), which can cause pre-
natal or postnatal death and a reduced efficiency of offspringproduction
(14–17). Therefore, somatic cell reprogramming-free strategies are
required for the practical use of genetically modified pigs in the medical
field. If a micromanipulation-free method can be established for pig
zygotes produced by in vitromaturation (IVM) and in vitro fertilization
(IVF) techniques,which enable thepreparationof largenumbers of zygotes
from the ovaries of slaughtered pigs, the rapid and large-scale production
of mutant pigs may be feasible (Fig. 1). Here, we established a simple
GEEP (gene editing by electroporation of Cas9 protein) method for gen-
erating genetically modified pigs using IVF zygotes.
RESULTS AND DISCUSSION

First, we evaluated the use of mouse zygote electroporation conditions
(seven 3-ms pulses at a voltage of 30 V) (18) for introducing the
CRISPR (clustered regularly interspaced short palindromic re-
peats)/Cas9 system into pig zygotes. Thirteen hours after IVF was in-
itiated, the presumptive zygotes were electroporated with Cas9mRNA
(400 ng ml−1) and single-guide RNA (sgRNA; 200 ng ml−1) targeting the
FGF10 gene (18, 19). However, most of the electroporated IVF zygotes
did not develop properly because of electroporation-induced damage
(Fig. 2D). Therefore, we optimized the pig zygote electroporation con-
ditions as follows.We electroporated the same concentrations ofCas9
mRNAand sgRNA into the presumptive zygotes,while varying thepulse
duration (1 to 3 ms) and the number of pulses (three to seven) and
keeping the voltage at 30 V (Fig. 2, A to D). The electroporated zygotes
were cultured for 7 days until blastocyst formation, and then the fre-
quency of base insertions or deletions (indels) in the FGF10 gene was
analyzed (Fig. 2, B and C). The frequency of indels increased with in-
creasing pulse duration and number, whereas the blastocyst formation
rates fell markedly when the pulse duration and number exceeded 1ms
and five, respectively (Fig. 2D). From these results, we concluded that
five 1-ms pulses at a voltage of 30 V were the optimal electroporation
conditions for introducingCas9mRNAand sgRNA into pig IVF zygotes.
We also investigated the optimal timing of electroporation. We electro-
porated the presumptive zygotes at 11, 13, 19, 21, and 23 hours after the
startof IVF.Although theefficiencyof genomeeditingwas the sameamong
the groups, the rate of blastocyst formation was highest when the zygotes
were electroporated 13 hours after the start of IVF (fig. S1). Therefore, elec-
troporation was performed 13 hours after IVF initiation thereafter.

Although we succeeded in introducing indels into the pig genome
using the optimized electroporation conditions, themutation frequency
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was considerably lower than that observed inmice (18).Only 25%of the
targeted genomic sequences in the pig contained mutations (Fig. 2C),
whereas all of the targeted sequences carried mutations in mice. This
outcome was not unexpected, because of the shorter pulses and the
smaller number of pulses used during the electroporation of pig zygotes,
presumably resulting in the introduction of reduced amounts of Cas9
mRNA into the zygotes. To circumvent this issue, we investigated
whether Cas9 protein (160 kDa), which is much smaller than Cas9
mRNA(~1500 kDa), could bemore efficiently introduced into pig zygotes,
resulting in higher levels of genome targeting. We electroporated Cas9
protein (50 ng ml−1) with FGF10 sgRNA (200 ng ml−1) into pig zygotes
and found that the efficiency of genome editingwasmarkedly improved,
whereas the blastocyst formation rates were unaffected (Fig. 2, E to G).

We next examinedwhether our optimized conditionswere applicable
for the editing of other genes. We targeted theMyostatin (MSTN) gene,
which encodes a negative regulator of myogenesis and whose disruption
typically results in increased skeletal muscle mass in pigs (20, 21), cows
(22, 23), and sheep (23, 24). We electroporated Cas9 protein and various
sgRNAs targeting different sites in the first exon ofMSTN (Fig. 3A) using
the optimized conditions. We then evaluated the efficiency of genome
editing in the resulting blastocysts. Of the seven sgRNAs tested, two
(sgRNA6 and sgRNA7) induced high-efficiency genome editing and
one (sgRNA1) induced moderate-efficiency genome editing (Fig. 3, B
andC). The four remaining sgRNAs induced lower-efficiency genome
editing (fig. S2, A and B). The rates of blastocyst formation were un-
affected by the various sgRNAs (fig. S2C).We also analyzed theMSTN
sequences present in each blastocyst (Fig. 3D). Some blastocysts carried
two to four types of mutations and no wild-type sequence, whereas
others carried both mutated and wild-type sequences at variable ratios.
Tanihara et al. Sci. Adv. 2016; 2 : e1600803 14 September 2016
These findings indicated that theGEEPmethod enabled genome editing
in pigs and that its efficiency depended on the sgRNA target sequence.

We next investigated whether mutant pigs could be generated using
the GEEPmethod.We introduced Cas9 protein and sgRNA1, sgRNA6,
or sgRNA7 into zygotes by electroporation and then transferred them
into the oviducts of two recipient gilts at ~12 hours after electroporation.
Of the two recipients, one became pregnant and gave birth to 10 piglets
111 days after zygote transfer. One (10%) of the piglets died soon after
birth. Genomic DNA was extracted from ear biopsies and analyzed to
determine whether mutations were introduced into theMSTN gene.
Sequencing of the MSTN genomic regions flanking the target sites re-
vealed that 9 of the 10piglets carriedmutations in theMSTN gene (Fig. 4A
and table S1). Among them, no wild-type sequences were detected in
two piglets (#3 and #4), indicating that they carried biallelic mutations
in the MSTN gene. The other piglets exhibited mosaic genotypes in
whichmutations were present in 7 to 79% in their genomes. We ana-
lyzed piglet #4 further. We detected no MSTN protein expression in
muscle biopsies of piglet #4, whereas strong MSTN expression was
detected in the biopsy of a wild-type piglet (Fig. 4B), indicating that the
indels introduced intoMSTN exon1 in piglet #4 caused a frameshift that
prevented MSTN protein synthesis. The physical appearance of piglet
#4 suggested that its muscle mass was greater than that of the wild-type
piglet (Fig. 4C), and histological analysis of the longissimus thoracis
muscle isolated from 40-day-old piglets also revealed that the muscle
mass of piglet #4 was greater than that of wild-type piglets (Fig. 4D),
which is commonly observed in MSTN mutant animals (20, 22, 25).
We also investigated the distribution of skeletal muscle fiber type in the
wild-type and mutant piglets (Fig. 4, E to G). Immunohistochemical
analysis revealed that type I muscle fiber was reduced in the MSTN
Fig. 1. Comparison of the SCNT and the GEEP method. In vitro matured pig oocytes are used for SCNT, and in vitro fertilized zygotes are used for
GEEP. SCNT involves the removal of oocyte nuclei (enucleation), the transfer of mutant somatic cell nuclei (nuclear transfer), and the activation of the
reconstructed embryos after electrofusion, all of which takes ~5 hours. SCNT also requires the generation of mutant donor cells, which takes ~2 weeks.
On the other hand, GEEP takes ~10 min to transfer the genome editing system into the zygotes by electroporation. The total manipulation times
represent the estimated time required to produce 100mutant embryos by eachmethod. Mutant embryos are transferred into recipient sows, resulting
in the generation of mutant piglets.
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mutant pig, consistentwith previous findings (25). Together, these results
indicated that the electroporation of Cas9 protein and sgRNA into zy-
gotes resulted in the efficient generation of genetically modified pigs.

Nonspecific cleavage of off-target sequences byCas9 could be amajor
concern in the CRISPR/Cas9 system. To exclude this possibility, we ana-
lyzed the genome sequence of possible off-target sites. We searched the
whole genome sequence of the pig [UCSC (University of California,
Santa Cruz) Genome Browser on pig: SGSC Sscrofa10.2/susScr3] for
potential off-target sites and found three sites each for sgRNA6 and
sgRNA7 showing less than two mismatches (table S2). We amplified
these sites and the MSTN target site from piglets #4 (sgRNA6) and #8
(sgRNA7) by polymerase chain reaction (PCR) and analyzed themusing
deep sequencing (next-generation sequencing). The PCR amplicons of
eachMSTN target site carried the samemutations as we detected in our
cloning analysis (Fig. 4A and tables S1 and S3). In addition, a new mu-
tation (−7 base pairs) was detected in piglet #4 but with low frequency
(2%) (table S3). On the other hand,more than 99% of the amplicons of
possible off-target sitesweremadeupof thewild-type sequence (table S2).
The remaining 1% was composed of a small number of amplicons
(<0.1%) carrying different sequences. These were also detected when
we analyzed a wild-type piglet, indicating that these sequence changes
Tanihara et al. Sci. Adv. 2016; 2 : e1600803 14 September 2016
may be introduced by PCR errors or sequence errors. These results
indicate that genome editing occurred only in the targeted region of the
MSTN gene.

Finally, we investigated whether the mutation detected in the F0 pig
was inherited by the next generation. The epididymal spermatozoawere
collected from the F0 pig (#3 and #4) and were fertilized with in vitro
matured oocytes fromwild-type gilts. The zygotes were cultured in vitro
for 7 days until blastocyst formation, and their genome was analyzed
(Fig. 4H). All of the embryos from piglet #3 and 16 of 17 embryos from
piglet #4 were heterozygotes carrying the mutations, which were de-
tected in the F0 pig. The one remaining embryo carried only the wild-
type sequence; presumably, it developed parthenogenetically. These
results indicate that the mutation introduced by the GEEP method
was inherited by the next generations.

In conclusion, we have established a new method for generating
genetically modified pigs using the CRISPR/Cas9 system. We in-
corporated several elements that contributed to the increased efficiency
of gene editing in pigs. First, we subjected oocytes from the ovaries of
slaughtered pigs to IVM and IVF, to efficiently generate large numbers
of zygotes. Second, we developed an optimized method for electro-
porating pig zygotes, which avoided the time-consumingmethod ofmi-
Fig. 2. Optimization of electroporation conditions for efficient genome editing in pig zygotes. (A) Genomic structure of the FGF10 locus and the
sgRNA target sequence in the third FGF10 exon. Nucleotides in blue represent the target sequence, andnucleotides in red represent theprotospacer adjacent
motif (PAM) sequence. (B) Genomic sequences of blastocysts formed after electroporation with Cas9mRNA and FGF10 sgRNA. Various pulsing conditions
were tested (shown on the left) using a fixed voltage (30 V). The arrowhead indicates the Cas9 cleavage sites. (C) Frequency of mutations in the FGF10 target
region detected in PCR amplicons. (D) Blastocyst formation rates of the electroporated zygotes. (E to G) Comparison of the genome editing efficiency and
blastocyst formation rates between Cas9mRNA– andCas9 protein–electroporated zygotes. (E) Direct sequencing of PCR amplicons from theblastocysts after
electroporation. (F) Frequency of indels in the FGF10 target region. (G) Blastocyst formation rates of the electroporated zygotes. *P < 0.05 using one-way
analysis of variance (ANOVA). Error bars, means ± SEM.
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Fig. 3. Genome editing of theMSTN gene. (A) Genomic structure of theMSTN locus and sgRNA sequences targeting the firstMSTN exon. (B) Represen-
tative genomic sequences of blastocysts formedafter zygote electroporationwith Cas9protein andMSTN sgRNAs (sgRNA1, sgRNA6, and sgRNA7; see also fig.
S2). Arrowheads indicate the Cas9 cleavage sites. (C) Frequency of mutations in the PCR amplicons of each target region. (D) Alignment of sequences from
each blastocyst after electroporation. Nucleotides in blue indicate target sequences, and nucleotides in red indicate PAM sequences. Nucleotides in green
indicate inserted sequences. WT, wild type.
Tanihara et al. Sci. Adv. 2016; 2 : e1600803 14 September 2016 4 of 8
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Fig. 4. Generation ofMSTNmutant piglets. (A) Representative target region sequences inMSTNmutant piglets (see also table S1). Nucleotides in blue
represent target sequences, and nucleotides in red represent PAM sequences. (B). Expression of MSTN protein in the longissimus thoracis muscle. (C) Phe-
notypic analysis of thebiallelicmutant piglet showedenlargedmusclemass, comparedwith theWT control (arrowheads). (D) Hematoxylin andeosin staining
of the longissimus thoracis muscle. Scale bars, 200 mm. (E and F) Immunohistochemical analysis of fast and slowmyosin expression in themuscle. Scale bars,
100 mm. (G) Quantification of slow myofibers in the muscle. (H) Analysis of the genome sequence of F1 blastocysts of piglets #3 and #4. *P < 0.01 using
Student’s t test. Error bars, means ± SEM.
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cromanipulation. Next, we incorporated the electroporation of Cas9
protein, which was predicted to be introduced more efficiently into
zygotes than Cas9mRNA. This change markedly improved the gene
editing efficiency, resulting in high rates of mutant outcomes (90%).
TheGEEPmethod directly introduces geneticmutations into pig zygotes
and does not require the epigenetic reprogramming of a donor somatic
cell nucleus. Thus, GEEP may reduce the risks of both prenatal and
postnatal death, which are sometimes observed in mutant pigs gener-
ated by the SCNT method (16, 17). Because GEEP does not require
advanced skills and saves considerable time, it has the potential to facilitate
the large-scale production of mutant pigs. Finally, the GEEP method
will be applicable to the genetic modification of other mammals, in
addition to pigs, and will undoubtedly contribute to the advancement
of biomedical and agricultural research.
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MATERIALS AND METHODS

Animals
All animal care and experiments were carried out in accordance with
the Guidelines for Animal Experiments of Tokushima University and
theNational Institute ofAgrobiological Sciences. This studywas approved
by the Ethics Committee of Tokushima University for Animal Research
(approval number T28-21) and the Safety Management Section of the
National Institute ofAgrobiological Sciences (approval numberH18-038).

Oocyte collection, IVM, and IVF
Pig ovaries were obtained from prepubertal crossbred gilts (Landrace ×
LargeWhite × Duroc breeds) at a local slaughterhouse. Cumulus-oocyte
complexes (COCs) with a uniform ooplasm and compact cumulus cell
mass were collected from follicles 2 to 6 mm in diameter. COCs were
cultured in maturation medium at 39°C in a humidified incubator
containing 5% CO2 and 5% O2 as described previously, with minor
modifications (26). After 20 to 22 hours of maturation, the COCs
were subsequently cultured for 24 hours inmaturationmediumwithout
hormones.

The matured oocytes were subjected to IVF, as described previously
(26). Briefly, frozen-thawed spermatozoa were transferred into 6 ml of
porcine fertilizationmedium (PFM; Research Institute for the Functional
Peptides Co.) and then washed by centrifugation at 500g for 5 min.
The spermatozoa pellets were resuspended in PFM and adjusted to 5 ×
106 cells ml−1. COCs were transferred to the PFM containing sperm co-
incubated for 12 hours at 39°C under 5%CO2 and 5%O2. After the co-
incubation, the inseminated zygotes were denuded from the cumulus
cells and the attached spermatozoa by mechanical pipetting.

Preparation of sgRNA, Cas9 mRNA, and Cas9 protein
pDR274 plasmids carrying target sequences were constructed by the
insertion of annealed oligos into the Bsa I site. The oligos shown in table
S4 were purchased from Sigma-Aldrich. After Dra I digestion, sgRNAs
were synthesized using the MEGAshortscript T7 Transcription Kit
(Ambion) and then purified by phenol–chloroform–isoamyl alcohol
extraction and isopropanol precipitation. The precipitated RNA was
dissolved in Opti-MEM I. The RNAs were quantified by absorption
spectroscopy and agarose gel electrophoresis and were stored at −30°C
until use. Cas9 mRNA was prepared as described previously (18). The
Cas9 protein in the Guide-it sgRNA Screening Kit (Takara Bio) was used
for electroporation.
Tanihara et al. Sci. Adv. 2016; 2 : e1600803 14 September 2016
Electroporation
Electroporation was performed as described previously with minor
modifications (18). Briefly, the electrode (LF501PT1-20; BEX Co.
Ltd.) was connected to a CUY21EDIT II electroporator (BEX Co. Ltd.)
and set under a stereoscopicmicroscope. The inseminated zygotes were
washed with Opti-MEM I solution (Life Technologies) and placed in a
line in the electrode gap, in a chamber slide filled with 10 ml of Opti-
MEMI solution containing sgRNAandCas9mRNAor protein (Takara
Bio). Electroporation was then performed under various conditions.
After electroporation, the zygotes were washed with pig zygotemedium
(Research Institute for the Functional Peptides Co.) and cultured either
until embryo transfer (for 12 hours) or for 3 days. Embryos cultured for
3 days were subsequently incubated in porcine blastocyst medium
(Research Institute for the Functional Peptides Co.) for 4 days.

Analysis of the targeted genes after electroporation
Genomic DNAs were prepared from blastocysts or ear biopsies by
boiling them in 50 mM NaOH solution. After neutralization, the ge-
nomic regions flanking the sgRNA target sequences were amplified by
PCR using the following specific primers: FGF10, 5′-CCATCCCATT-
TGATCTGCTT-3′ (forward) and 5′-CTTCAACTGGCAGCA-
CAATG-3′ (reverse); MSTN, 5′-ATGCAAAAACTGCAAATCTATG-3′
(forward) and 5′-TGTAGGCATGGTAATGATCG-3′ (reverse). The
PCRproductswere cloned into the pMD20 (Takara Bio) plasmid.More
than 12 plasmidswere isolated per blastocyst or biopsy, and the targeted
genomic regions were sequenced. Sequencing was performed using the
BigDye Terminator Cycle Sequencing Kit version 3.1 (Thermo Fisher
Scientific) and the ABI 3500 Genetic Analyzer (Applied Biosystems).

Embryo transfer
Two recipient gilts, whose estrous cycles had been synchronized, were
prepared for embryo transfer as describedpreviously (27).Approximately
12 hours after electroporation, the one- to two-cell stage embryos were
transferred to the oviducts of a recipient gilt. Approximately 100 embryos
were transferred to eachoviduct, resulting in the transfer of~200 embryos
per gilt.

Detection of MSTN protein
Muscle biopsies were obtained from the longissimus thoracis muscle of
40-day-old piglets with biallelicmutation (#4) orwild type piglets under
anesthesia. Total protein was extracted using the M-PER Mammalian
Protein Extraction Reagent (Life Technologies) and quantified using
the bicinchoninic acid protein assay reagent (Thermo Fisher Scientific).
All protein extracts were diluted to the same concentration (2.2mgml−1).
The MSTN protein concentrations were determined with an enzyme-
linked immunosorbent assay kit (R&D Systems), according to the man-
ufacturer’s protocol. We used MSTN propeptide (ProSpec) and MSTN
protein (Wako) as negative and positive controls, respectively.

Histochemical analysis of muscle samples
Themuscle samples were fixed in 10% formalin–neutral buffer solution
(Wako) and embedded in paraffin. Paraffin sections (10 mm) were
prepared and stained with hematoxylin and eosin, using conventional
techniques.

Immunohistochemical analysis
Longissimus thoracis muscles obtained from 40-day-old piglets were
frozen in dry-ice acetone (−78°C), and cryosections were generated
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using a cryostat microtome (Sakura Finetek). To analyze the distribution
of skeletal muscle fiber types, the sections were immunostained with
anti-slow (clone M8421, 1:400; Sigma) and anti-fast (clone M4276,
1:200; Sigma) myosin heavy-chain monoclonal antibodies, which are
specific markers of type I and type II myofibers, respectively. Histofine
Simple Stain MAX PO (M) (Nichirei) was used as the secondary an-
tibody. The proportion of each fiber type in each section of the long-
issimus thoracis muscle was determined using a digital microscope
(VHX-5000; Keyence).

Off-target analysis using deep sequencing
GenomicDNAsprepared fromear biopsies (piglet #4 and #8)were used
as templates for PCR. The genomic regions flanking the sgRNA target
sites or potential off-target sites were amplified by two-step PCRs using
specific primers (table S5) and Index PCR Primers following the man-
ufacturer’s instruction (Illumina). After the gel purification, the ampli-
cons were subjected to the MiSeq using the MiSeq Reagent Kit v3
(150 cycles) (Illumina).

Inheritance analysis
Epididymal spermatozoa from piglets (#3 and #4) were used for the in-
heritance analysis. Spermatozoa were collected from the epididymides
of piglets (7 months old) and were frozen, as described previously (28).
At the time of insemination, the frozen spermatozoawere thawed at 37°C
and then fertilized with in vitro matured oocytes fromwild-type gilts as
described above. After IVF, the zygotes were cultured for 7 days and
the targeted genomic regions in blastocysts that were developed were
sequenced.

Statistical analysis
Five replicates per treatment group were performed and analyzed.
Percentages of embryos developed to the blastocyst stagewere subjected
to arcsine transformation before ANOVA. The transformed data were
tested by ANOVA, followed by protected Fisher’s least significant
difference test, using the StatView software (Abacus Concepts). Dif-
ferences with a probability value of P < 0.05 were considered statistically
significant.
ay 31, 2017
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