261 research outputs found

    Effects of etizolam and ethyl loflazepate on the P300 event-related potential in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Benzodiazepines carry the risk of inducing cognitive impairments, which may go unnoticed while profoundly disturbing social activity. Furthermore, these impairments are partly associated with the elimination half-life (EH) of the substance from the body. The object of the present study was to examine the effects of etizolam and ethyl loflazepate, with EHs of 6 h and 122 h, respectively, on information processing in healthy subjects.</p> <p>Methods</p> <p>Healthy people were administered etizolam and ethyl loflazepate acutely and subchronically (14 days). The auditory P300 event-related potential and the neuropsychological batteries described below were employed to assess the effects of drugs on cognition. The P300 event-related potential was recorded before and after drug treatments. The digit symbol test, trail making test, digit span test and verbal paired associates test were administered to examine mental slowing and memory functioning.</p> <p>Results</p> <p>Acute administration of drugs caused prolongation in P300 latency and reduction in P300 amplitude. Etizolam caused a statistically significant prolongation in P300 latency compared to ethyl loflazepate. Furthermore, subchronic administration of etizolam, but not ethyl loflazepate, still caused a weak prolongation in P300 latency. In contrast, neuropsychological tests showed no difference.</p> <p>Conclusions</p> <p>The results indicate that acute administration of ethyl loflazepate induces less effect on P300 latency than etizolam.</p

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Physics of Neutron Star Crusts

    Get PDF
    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.Comment: 182 pages, published version available at <http://www.livingreviews.org/lrr-2008-10

    The role of neutrophils in the upper and lower respiratory tract during influenza virus infection of mice

    Get PDF
    BACKGROUND: Neutrophils have been shown to play a role in host defence against highly virulent and mouse-adapted strains of influenza virus, however it is not clear if an effective neutrophil response is an important factor moderating disease severity during infection with other virus strains. In this study, we have examined the role of neutrophils during infection of mice with influenza virus strain HKx31, a virus strain of the H3N2 subtype and of moderate virulence for mice, to determine the role of neutrophils in the early phase of infection and in clearance of influenza virus from the respiratory tract during the later phase of infection. METHODS: The anti-Gr-1 monoclonal antibody (mAb) RB6-8C5 was used to (i) identify neutrophils in the upper (nasal tissues) and lower (lung) respiratory tract of uninfected and influenza virus-infected mice, and (ii) deplete neutrophils prior to and during influenza virus infection of mice. RESULTS: Neutrophils were rapidly recruited to the upper and lower airways following influenza virus infection. We demonstrated that use of mAb RB6-8C5 to deplete C57BL/6 (B6) mice of neutrophils is complicated by the ability of this mAb to bind directly to virus-specific CD8+ T cells. Thus, we investigated the role of neutrophils in both the early and later phases of infection using CD8+ T cell-deficient B6.TAP-/- mice. Infection of B6.TAP-/- mice with a low dose of influenza virus did not induce clinical disease in control animals, however RB6-8C5 treatment led to profound weight loss, severe clinical disease and enhanced virus replication throughout the respiratory tract. CONCLUSION: Neutrophils play a critical role in limiting influenza virus replication during the early and later phases of infection. Furthermore, a virus strain of moderate virulence can induce severe clinical disease in the absence of an effective neutrophil response

    Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape

    Get PDF
    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.National Institutes of Health (U.S.) (Common Fund 5UL1DE019581)National Institutes of Health (U.S.) (Common Fund RL1DE019021)National Institutes of Health (U.S.) (Common Fund 5TL1EB008540)National Institutes of Health (U.S.) (Grant 1U01HG007037)National Institutes of Health (U.S.) (Grant 5P01NS055923

    Relationship between maternal obesity and infant feeding-interactions

    Get PDF
    BACKGROUND: There are no data regarding the relationship between maternal adiposity and interaction and feeding of infants and possible contribution to childhood obesity. In this study we determined the relationship between maternal body weight and composition and infant feeding patterns and maternal-infant interaction during 24-hour metabolic rate measurements in the Enhanced Metabolic Testing Activity Chamber (EMTAC). METHODS: The amount of time four obese (BMI = 33.5 ± 5.3 kg/m(2)) and three normal weight (BMI = 23.1 ± 0.6 kg/m(2)) biological mothers, spent feeding and interacting with their infants, along with what they ingested, was recorded during 24-hour metabolic rate measurements in the EMTAC. The seven infants were 4.9 ± 0.7 months, 69 ± 3 cm, 7.5 ± 0.8 kg, 26 ± 3 % fat and 29 ± 25 percentile for weight for length. Energy and macronutrient intake (kcal/kg) were assessed. Maternal body composition was determined by air displacement plethysmorgraphy and that of the infants by skin-fold thicknesses. Pearson correlations and independent t-tests were utilized for statistical analysis (p < 0.05). RESULTS: Infants born to obese biological mothers consumed more energy (87.6 ± 18.9 vs. 68.1 ± 17.3) and energy as carbohydrate (25 ± 6 vs.16 ± 3; p < 0.05) than their normal weight counterparts. Most of the increased intake was due to complementary feedings. Twenty-four hour infant energy intake increased with both greater maternal body weight (r = 0.73;p < 0.06) and percent body fat. Furthermore, obese biological mothers spent less total time interacting (570 ± 13 vs. 381 ± 30 minutes) and feeding (298 ± 32 vs.176 ± 22 minutes) (p < 0.05) their infants than their normal weight counterparts. Twenty-four hour interaction time negatively correlated with both maternal body weight (r = -0.98; p < 0.01) and percent body fat (r = -0.92; p < 0.01). Moreover, infants of obese mothers slept more (783 ± 38 vs. 682 ± 32 minutes; p < 0.05) than their normal weight counterparts. However, there were no differences in total 24-hour energy expenditure, resting and sleeping metabolic rates (kcal/kg) for infants born to obese and normal weight biological mothers. CONCLUSION: Greater maternal body weight and percent body fat were associated with greater infant energy intakes. These infants were fed less frequently and consumed more carbohydrates in a shorter period of time as compared to infants from normal weight biological mothers. These variations in feeding patterns may predispose certain infants to obesity

    Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology

    Get PDF
    An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower brain pH, the change is not necessarily causally related to brain pH

    Expression of minichromosome maintenance protein 2 as a marker for proliferation and prognosis in diffuse large B-cell lymphoma: a tissue microarray and clinico-pathological analysis

    Get PDF
    BACKGROUND: Minichromosome maintenance (MCM) proteins are essential for the initiation of DNA replication and have been found to be relevant markers for prognosis in a variety of tumours. The aim of this study was to assess the proliferative activity of diffuse large B-cell lymphoma (DLBCL) in tissue microarray (TMA) using one of the minichromosome maintenance proteins (Mcm2) and to explore its potential value to predict prognosis. METHODS: Immunohistochemistry for Mcm2 was performed on TMAs constructed from 302 cases of DLBCL. A monoclonal mouse antibody was used after heat induced antigen retrieval. Mcm2 expression was scored quantitatively. Positivity for Mcm2 was defined as presence of nuclear expression of Mcm2 in greater than or equal to 40 % of tumour cells. A statistical analysis was carried out of the association of Mcm2 and the clinico-pathological characteristics. RESULTS: Mcm2 expression was clearly evident in the nuclei of proliferating non-neoplastic cells and tumour cells. Positivity for Mcm2 was found in 46% (98/211) of analysable cases. A significant correlation existed between Mcm2 expression and presence of bulky disease (p = 0.003). Poor disease specific survival was observed in patients with DLBCL positive for Mcm2 expression in the univariate analysis (p = 0.0424). CONCLUSION: Mcm2 expression can be used to assess tumour proliferation and may be useful as an additional prognostic marker to refine the prediction of outcome in DLBCL

    Lipoglycans Contribute to Innate Immune Detection of Mycobacteria

    Get PDF
    Innate immune recognition is based on the detection, by pattern recognition receptors (PRRs), of molecular structures that are unique to microorganisms. Lipoglycans are macromolecules specific to the cell envelope of mycobacteria and related genera. They have been described to be ligands, as purified molecules, of several PRRs, including the C-type lectins Mannose Receptor and DC-SIGN, as well as TLR2. However, whether they are really sensed by these receptors in the context of a bacterium infection remains unclear. To address this question, we used the model organism Mycobacterium smegmatis to generate mutants altered for the production of lipoglycans. Since their biosynthesis cannot be fully abrogated, we manipulated the biosynthesis pathway of GDP-Mannose to obtain some strains with either augmented (∼1.7 fold) or reduced (∼2 fold) production of lipoglycans. Interestingly, infection experiments demonstrated a direct correlation between the amount of lipoglycans in the bacterial cell envelope on one hand and the magnitude of innate immune signaling in TLR2 reporter cells, monocyte/macrophage THP-1 cell line and human dendritic cells, as revealed by NF-κB activation and IL-8 production, on the other hand. These data establish that lipoglycans are bona fide Microbe-Associated Molecular Patterns contributing to innate immune detection of mycobacteria, via TLR2 among other PRRs
    corecore