8 research outputs found

    The first Malay database toward the ethnic-specific target molecular variation

    Get PDF
    BACKGROUND:The Malaysian Node of the Human Variome Project (MyHVP) is one of the eighteen official Human Variome Project (HVP) country-specific nodes. Since its inception in 9(th) October 2010, MyHVP has attracted the significant number of Malaysian clinicians and researchers to participate and contribute their data to this project. MyHVP also act as the center of coordination for genotypic and phenotypic variation studies of the Malaysian population. A specialized database was developed to store and manage the data based on genetic variations which also associated with health and disease of Malaysian ethnic groups. This ethnic-specific database is called the Malaysian Node of the Human Variome Project database (MyHVPDb). FINDINGS:Currently, MyHVPDb provides only information about the genetic variations and mutations found in the Malays. In the near future, it will expand for the other Malaysian ethnics as well. The data sets are specified based on diseases or genetic mutation types which have three main subcategories: Single Nucleotide Polymorphism (SNP), Copy Number Variation (CNV) followed by the mutations which code for the common diseases among Malaysians. MyHVPDb has been open to the local researchers, academicians and students through the registration at the portal of MyHVP ( http://hvpmalaysia.kk.usm.my/mhgvc/index.php?id=register ). CONCLUSIONS:This database would be useful for clinicians and researchers who are interested in doing a study on genomics population and genetic diseases in order to obtain up-to-date and accurate information regarding the population-specific variations and also useful for those in countries with similar ethnic background

    Global Globin Network Consensus Paper: Classification and Stratified Roadmaps for Improved Thalassaemia Care and Prevention in 32 Countries

    Get PDF
    The Global Globin Network (GGN) is a project-wide initiative of the Human Variome/Global Variome Project (HVP) focusing on haemoglobinopathies to build the capacity for genomic diagnosis, clinical services, and research in low- and middle-income countries. At present, there is no framework to evaluate the improvement of care, treatment, and prevention of thalassaemia and other haemoglobinopathies globally, despite thalassaemia being one of the most common monogenic diseases worldwide. Here, we propose a universally applicable system for evaluating and grouping countries based on qualitative indicators according to the quality of care, treatment, and prevention of haemoglobinopathies. We also apply this system to GGN countries as proof of principle. To this end, qualitative indicators were extracted from the IthaMaps database of the ITHANET portal, which allowed four groups of countries (A, B, C, and D) to be defined based on major qualitative indicators, supported by minor qualitative indicators for countries with limited resource settings and by the overall haemoglobinopathy carrier frequency for the target countries of immigration. The proposed rubrics and accumulative scores will help analyse the performance and improvement of care, treatment, and prevention of haemoglobinopathies in the GGN and beyond. Our proposed criteria complement future data collection from GGN countries to help monitor the quality of services for haemoglobinopathies, provide ongoing estimates for services and epidemiology in GGN countries, and note the contribution of the GGN to a local and global reduction of disease burden

    Evaluation of in silico predictors on short nucleotide variants in HBA1, HBA2, and HBB associated with haemoglobinopathies

    Get PDF
    Haemoglobinopathies are the commonest monogenic diseases worldwide and are caused by variants in the globin gene clusters. With over 2400 variants detected to date, their interpretation using the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) guidelines is challenging and computational evidence can provide valuable input about their functional annotation. While many in silico predictors have already been developed, their performance varies for different genes and diseases. In this study, we evaluate 31 in silico predictors using a dataset of 1627 variants in HBA1, HBA2, and HBB. By varying the decision threshold for each tool, we analyse their performance (a) as binary classifiers of pathogenicity and (b) by using different non-overlapping pathogenic and benign thresholds for their optimal use in the ACMG/AMP framework. Our results show that CADD, Eigen-PC, and REVEL are the overall top performers, with the former reaching moderate strength level for pathogenic prediction. Eigen-PC and REVEL achieve the highest accuracies for missense variants, while CADD is also a reliable predictor of non-missense variants. Moreover, SpliceAI is the top performing splicing predictor, reaching strong level of evidence, while GERP++ and phyloP are the most accurate conservation tools. This study provides evidence about the optimal use of computational tools in globin gene clusters under the ACMG/AMP framework

    Adapting the ACMG/AMP variant classification framework: A perspective from the ClinGen Hemoglobinopathy Variant Curation Expert Panel

    No full text
    Accurate and consistent interpretation of sequence variants is integral to the delivery of safe and reliable diagnostic genetic services. To standardize the interpretation process, in 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published a joint guideline based on a set of shared standards for the classification of variants in Mendelian diseases. The generality of these standards and their subjective interpretation between laboratories has prompted efforts to reduce discordance of variant classifications, with a focus on the expert specification of the ACMG/AMP guidelines for individual genes or diseases. Herein, we describe our experience as a ClinGen Variant Curation Expert Panel to adapt the ACMG/AMP criteria for the classification of variants in three globin genes (HBB, HBA2, and HBA1) related to recessively inherited hemoglobinopathies, including five evidence categories, as use cases demonstrating the process of specification and the underlying rationale

    Global Globin Network Consensus Paper: Classification and Stratified Roadmaps for Improved Thalassaemia Care and Prevention in 32 Countries

    No full text
    The Global Globin Network (GGN) is a project-wide initiative of the Human Variome/Global Variome Project (HVP) focusing on haemoglobinopathies to build the capacity for genomic diagnosis, clinical services, and research in low- and middle-income countries. At present, there is no framework to evaluate the improvement of care, treatment, and prevention of thalassaemia and other haemoglobinopathies globally, despite thalassaemia being one of the most common monogenic diseases worldwide. Here, we propose a universally applicable system for evaluating and grouping countries based on qualitative indicators according to the quality of care, treatment, and prevention of haemoglobinopathies. We also apply this system to GGN countries as proof of principle. To this end, qualitative indicators were extracted from the IthaMaps database of the ITHANET portal, which allowed four groups of countries (A, B, C, and D) to be defined based on major qualitative indicators, supported by minor qualitative indicators for countries with limited resource settings and by the overall haemoglobinopathy carrier frequency for the target countries of immigration. The proposed rubrics and accumulative scores will help analyse the performance and improvement of care, treatment, and prevention of haemoglobinopathies in the GGN and beyond. Our proposed criteria complement future data collection from GGN countries to help monitor the quality of services for haemoglobinopathies, provide ongoing estimates for services and epidemiology in GGN countries, and note the contribution of the GGN to a local and global reduction of disease burden
    corecore