21 research outputs found

    Atrial fibrillation is frequent but does not affect risk stratification in pulmonary embolism

    Get PDF
    Background: Although prior studies indicate a high prevalence of atrial fibrillation (AF) in patients with pulmonary embolism (PE), the exact prevalence and prognostic impact are unknown. Methods: We aimed to investigate the prevalence, risk factors and prognostic impact of AF on risk stratification, in-hospital adverse outcomes and mortality in 528 consecutive PE patients enrolled in a single-centre registry between 09/2008 and 09/2017. Results: Overall, 52 patients (9.8%) had known AF and 57 (10.8%) presented with AF on admission; of those, 34 (59.6%) were newly diagnosed with AF. Compared to patients with no AF, overt hyperthyroidism was associated with newly diagnosed AF (OR 7.89 [2.99–20.86]), whilst cardiovascular risk comorbidities were more frequently observed in patients with known AF. Patients with AF on admission had more comorbidities, presented more frequently with tachycardia and elevated cardiac biomarkers and were hence stratified to higher risk classes. However, AF on admission had no impact on in-hospital adverse outcome (8.3%) and in-hospital mortality (4.5%). In multivariate logistic regression analyses corrected for AF on admission, NT-proBNP and troponin elevation as well as higher risk classes in risk assessment models remained independent predictors of an in-hospital adverse outcome. Conclusion: Atrial fibrillation is a frequent finding in PE, affecting more than 10% of patients. However, AF was not associated with a higher risk of in-hospital adverse outcomes and did not affect the prognostic performance of risk assessment strategies. Thus, our data support the use of risk stratification tools for patients with acute PE irrespective of the heart rhythm on admission

    Direct proteomic and high-resolution microscopy biopsy analysis identifies distinct ventricular fates in severe aortic stenosis

    Get PDF
    The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS

    Cardiac arrest in takotsubo syndrome: Results from the InterTAK Registry

    Get PDF
    Aims: We aimed to evaluate the frequency, clinical features, and prognostic implications of cardiac arrest (CA) in takotsubo syndrome (TTS).Methods and results: We reviewed the records of patients with CA and known heart rhythm from the International Takotsubo Registry. The main outcomes were 60-day and 5-year mortality. In addition, predictors of mortality and predictors of CA during the acute TTS phase were assessed. Of 2098 patients, 103 patients with CA and known heart rhythm during CA were included. Compared with patients without CA, CA patients were more likely to be younger, male, and have apical TTS, atrial fibrillation (AF), neurologic comorbidities, physical triggers, and longer corrected QT-interval and lower left ventricular ejection fraction on admission. In all, 57.1% of patients with CA at admission had ventricular fibrillation/tachycardia, while 73.7% of patients with CA in the acute phase had asystole/pulseless electrical activity. Patients with CA showed higher 60-day (40.3% vs. 4.0%, P Conclusions: Cardiac arrest is relatively frequent in TTS and is associated with higher short- and long-term mortality. Clinical and electrocardiographic parameters independently predicted mortality after CA.</p

    The DZHK research platform: maximisation of scientific value by enabling access to health data and biological samples collected in cardiovascular clinical studies

    Get PDF
    The German Centre for Cardiovascular Research (DZHK) is one of the German Centres for Health Research and aims to conduct early and guideline-relevant studies to develop new therapies and diagnostics that impact the lives of people with cardiovascular disease. Therefore, DZHK members designed a collaboratively organised and integrated research platform connecting all sites and partners. The overarching objectives of the research platform are the standardisation of prospective data and biological sample collections among all studies and the development of a sustainable centrally standardised storage in compliance with general legal regulations and the FAIR principles. The main elements of the DZHK infrastructure are web-based and central units for data management, LIMS, IDMS, and transfer office, embedded in a framework consisting of the DZHK Use and Access Policy, and the Ethics and Data Protection Concept. This framework is characterised by a modular design allowing a high standardisation across all studies. For studies that require even tighter criteria additional quality levels are defined. In addition, the Public Open Data strategy is an important focus of DZHK. The DZHK operates as one legal entity holding all rights of data and biological sample usage, according to the DZHK Use and Access Policy. All DZHK studies collect a basic set of data and biosamples, accompanied by specific clinical and imaging data and biobanking. The DZHK infrastructure was constructed by scientists with the focus on the needs of scientists conducting clinical studies. Through this, the DZHK enables the interdisciplinary and multiple use of data and biological samples by scientists inside and outside the DZHK. So far, 27 DZHK studies recruited well over 11,200 participants suffering from major cardiovascular disorders such as myocardial infarction or heart failure. Currently, data and samples of five DZHK studies of the DZHK Heart Bank can be applied for

    Electromechanical vortex filaments during cardiac fibrillation

    No full text
    Self-organized dynamics of vortex-like rotating waves or scroll waves underlie complex spatial-temporal pattern formation in many excitable chemical and biological systems1-4. In the heart, filament-like phase singularities5,6 associated with three-dimensional scroll waves8 are considered to be the organizing centers of life-threatening cardiac arrhythmias7-13. The mechanisms underlying the onset, perpetuation, and control14-16 of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, the visualization of three-dimensional spatial-temporal dynamics of scroll waves inside cardiac tissue has thus far evaded experimental realization. Here, we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside contracting cardiac tissue using high-resolution 4D ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities using simultaneous tri-modal measurement of membrane potential, intracellular calcium, and mechanical contraction of the heart. Our results demonstrate that cardiac fibrillation can be characterized through the three-dimensional spatial-temporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interaction and we characterize their dynamics in terms of trajectories, topological charge, and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications

    Atropine augments cardiac contractility by inhibiting cAMP-specific phosphodiesterase type 4

    No full text
    Abstract Atropine is a clinically relevant anticholinergic drug, which blocks inhibitory effects of the parasympathetic neurotransmitter acetylcholine on heart rate leading to tachycardia. However, many cardiac effects of atropine cannot be adequately explained solely by its antagonism at muscarinic receptors. In isolated mouse ventricular cardiomyocytes expressing a Förster resonance energy transfer (FRET)-based cAMP biosensor, we confirmed that atropine inhibited acetylcholine-induced decreases in cAMP. Unexpectedly, even in the absence of acetylcholine, after G-protein inactivation with pertussis toxin or in myocytes from M2- or M1/3-muscarinic receptor knockout mice, atropine increased cAMP levels that were pre-elevated with the β-adrenergic agonist isoproterenol. Using the FRET approach and in vitro phosphodiesterase (PDE) activity assays, we show that atropine acts as an allosteric PDE type 4 (PDE4) inhibitor. In human atrial myocardium and in both intact wildtype and M2 or M1/3-receptor knockout mouse Langendorff hearts, atropine led to increased contractility and heart rates, respectively. In vivo, the atropine-dependent prolongation of heart rate increase was blunted in PDE4D but not in wildtype or PDE4B knockout mice. We propose that inhibition of PDE4 by atropine accounts, at least in part, for the induction of tachycardia and the arrhythmogenic potency of this drug

    Cardiac‐specific succinate dehydrogenase deficiency in Barth syndrome

    No full text
    Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac-specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell-derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome

    A junctional cAMP compartment regulates rapid Ca2+ signaling in atrial myocytes

    No full text
    Brandenburg S, Pawlowitz J, Steckmeister V, et al. A junctional cAMP compartment regulates rapid Ca2+ signaling in atrial myocytes. Journal of Molecular and Cellular Cardiology. 2022;165:141-157.Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following β-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3′,5′-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas β-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas β-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters
    corecore