17 research outputs found

    The Dengue virus in Nepal: gaps in diagnosis and surveillance.

    Get PDF
    BACKGROUND: The introduction of the dengue virus (DENV) in Nepal is recent, first reports date back to 2004 from a Japanese traveller and limited information is available about DENV infection in the Nepali population. Within a decade after the first DENV detection, it is now endemic in multiple districts of Nepal with approximately 11.2 million people residing in the Terai belt being at risk of DENV infection. Sporadic cases of DENV infection have been reported every year for the past decade during the monsoon season, mainly in the Terai region. METHODS: Medline/Embase/Cochrane databases were reviewed for reports on the burden of dengue infection, diagnostic methods, and national surveillance. RESULTS: Four outbreaks were reported since 2004 including the diagnosis of all serotypes in 2006 and predominance of a single serotype in 2010 (DENV-1), 2013 (DENV-2), and 2016 (DENV-1). The clinical diagnoses showed a predominance of dengue fever while 4/917 (0.4%), 8/642 (1.2%) and 8/1615 (0.4%) dengue haemorrhagic fever/dengue shock syndrome cases were identified during the outbreaks in 2010, 2013 and 2016, respectively. The number of cases reported in males was significantly higher (67.4%) than in females. Disease occurrence was primarily found in the Terai region until 2010 and was increasingly detected in the Hilly region in 2016. CONCLUSION: In Nepal currently weak diagnostic facilities, very limited research on mosquitoes vectors, and poor surveillance of dengue leading to inappropriate detection and control of DENV. We surmise that improved basic research and epidemiological training courses for local scientists and laboratory personal at national and international level will help better understand the evolution and distribution of DENV transmission and its eventual control

    Current perspectives on invasive nontyphoidal Salmonella disease.

    Get PDF
    PURPOSE OF REVIEW: We searched PubMed for scientific literature published in the past 2 years for relevant information regarding the burden of invasive nontyphoidal Salmonella disease and host factors associated with nontyphoidal Salmonella infection and discuss current knowledge on vaccine development. The following search terms were used: Salmonella, non typhoidal/nontyphoidal, NTS, disease, bloodstream infection, invasive, sepsis/septicaemia/septicemia, bacteraemia/bacteremia, gastroenteritis, incidence, prevalence, morbidity, mortality, case fatality, host/risk factor, vaccination, and prevention/control. RECENT FINDINGS: Estimates of the global invasive nontyphoidal Salmonella disease burden have been recently updated; additional data from Africa, Asia, and Latin America are now available. New data bridge various knowledge gaps, particularly with respect to host risk factors and the geographical distribution of iNTS serovars. It has also been observed that Salmonella Typhimurium sequence type 313 is emergent in several African countries. Available data suggest that genetic variation in the sequence type 313 strain has led to increased pathogenicity and human host adaptation. A bivalent efficacious vaccine, targeting Salmonella serovars Typhimurium and Enteritidis, would significantly lower the disease burden in high-risk populations. SUMMARY: The mobilization of surveillance networks, especially in Asia and Latin America, may provide missing data regarding the invasive nontyphoidal Salmonella disease burden and their corresponding antimicrobial susceptibility profiles. Efforts and resources should be directed toward invasive nontyphoidal Salmonella disease vaccine development

    The epidemiology of dengue outbreaks in 2016 and 2017 in Ouagadougou, Burkina Faso.

    Get PDF
    BACKGROUND: Dengue is prevalent in as many as 128 countries with more than 100 million clinical episodes reported annually and four billion people estimated to be at risk. While dengue fever is systematically diagnosed in large parts of Asia and South America, the disease burden in Africa is less well investigated. This report describes two consecutive dengue outbreaks in Ouagadougou, Burkina Faso in 2016 and 2017. METHODS: Blood samples of febrile patients received at Schiphra laboratory in Ouagadougou, Burkina Faso, were screened for dengue infection using SD Bioline Dengue Duo rapid diagnostic test kits (Standard Diagnostics, Suwon, Republic of Korea). RESULTS: A total of 1,397 and 1,882 cases were reported by a single laboratory in 2016 and 2017, respectively. Most cases were at least 15 years of age and the results corroborated reports from WHO indicating the circulation of three dengue virus serotypes in Burkina Faso. CONCLUSION: This study complements data from other, simultaneously conducted surveillance efforts, and indicates that the dengue disease burden might be underestimated in sub-Saharan African nations. Dengue surveillance should be enhanced in African settings to determine the burden more accurately, and accelerated efforts towards a dengue vaccine should be put in place

    Occurrence of Typhoid Fever Complications and Their Relation to Duration of Illness Preceding Hospitalization: A Systematic Literature Review and Meta-analysis.

    Get PDF
    BACKGROUND:Complications from typhoid fever disease have been estimated to occur in 10%-15% of hospitalized patients, with evidence of a higher risk in children and when delaying the implementation of effective antimicrobial treatment. We estimated the prevalence of complications in hospitalized patients with culture-confirmed typhoid fever and the effects of delaying the implementation of effective antimicrobial treatment and age on the prevalence and risk of complications. METHODS:A systematic review and meta-analysis were performed using studies in the PubMed database. We rated risk of bias and conducted random-effects meta-analyses. Days of disease at hospitalization (DDA) was used as a surrogate for delaying the implementation of effective antimicrobial treatment. Analyses were stratified by DDA (DDA <10 versus ≥10 mean/median days of disease) and by age (children versus adults). Differences in risk were assessed using odds ratios (ORs) and 95% confidence intervals (CIs). Heterogeneity and publication bias were evaluated with the I2 value and funnel plot analysis, respectively. RESULTS:The pooled prevalence of complications estimated among hospitalized typhoid fever patients was 27% (95% CI, 21%-32%; I2 = 90.9%, P < .0001). Patients with a DDA ≥ 10 days presented higher prevalence (36% [95% CI, 29%-43%]) and three times greater risk of severe disease (OR, 3.00 [95% CI, 2.14-4.17]; P < .0001) than patients arriving earlier (16% [95% CI, 13%- 18%]). Difference in prevalence and risk by age groups were not significant. CONCLUSIONS:This meta-analysis identified a higher overall prevalence of complications than previously reported and a strong association between duration of symptoms prior to hospitalization and risk of serious complications

    The Dengue virus in Nepal: gaps in diagnosis and surveillance.

    No full text
    Portrait of an unknown man. The man is wearing a suit and tie and has a mustache. The photograph is mounted on mat board

    Serology as a Tool to Assess Infectious Disease Landscapes and Guide Public Health Policy.

    No full text
    Understanding the local burden and epidemiology of infectious diseases is crucial to guide public health policy and prioritize interventions. Typically, infectious disease surveillance relies on capturing clinical cases within a healthcare system, classifying cases by etiology and enumerating cases over a period of time. Disease burden is often then extrapolated to the general population. Serology (i.e., examining serum for the presence of pathogen-specific antibodies) has long been used to inform about individuals past exposure and immunity to specific pathogens. However, it has been underutilized as a tool to evaluate the infectious disease burden landscape at the population level and guide public health decisions. In this review, we outline how serology provides a powerful tool to complement case-based surveillance for determining disease burden and epidemiology of infectious diseases, highlighting its benefits and limitations. We describe the current serology-based technologies and illustrate their use with examples from both the pre- and post- COVID-19-pandemic context. In particular, we review the challenges to and opportunities in implementing serological surveillance in low- and middle-income countries (LMICs), which bear the brunt of the global infectious disease burden. Finally, we discuss the relevance of serology data for public health decision-making and describe scenarios in which this data could be used, either independently or in conjunction with case-based surveillance. We conclude that public health systems would greatly benefit from the inclusion of serology to supplement and strengthen existing case-based infectious disease surveillance strategies

    Madagascar's EPI vaccine programs: A systematic review uncovering the role of a child's sex and other barriers to vaccination.

    No full text
    Peer reviewed: TrueBACKGROUND: Immunizations are one of the most effective tools a community can use to increase overall health and decrease the burden of vaccine-preventable diseases. Nevertheless, socioeconomic status, geographical location, education, and a child's sex have been identified as contributing to inequities in vaccine uptake in low- and middle-income countries (LMICs). Madagascar follows the World Health Organization's Extended Programme on Immunization (EPI) schedule, yet vaccine distribution remains highly inequitable throughout the country. This systematic review sought to understand the differences in EPI vaccine uptake between boys and girls in Madagascar. METHODS: A systematic literature search was conducted in August 2021 through MEDLINE, the Cochrane Library, Global Index Medicus, and Google Scholar to identify articles reporting sex-disaggregated vaccination rates in Malagasy children. Gray literature was also searched for relevant data. All peer-reviewed articles reporting sex-disaggregated data on childhood immunizations in Madagascar were eligible for inclusion. Risk of bias was assessed using a tool designed for use in systematic reviews. Data extraction was conducted with a pre-defined data extraction tool. Sex-disaggregated data were synthesized to understand the impact of a child's sex on vaccination status. FINDINGS: The systematic search identified 585 articles of which a total of three studies were included in the final data synthesis. One additional publication was included from the gray literature search. Data from included articles were heterogeneous and, overall, indicated similar vaccination rates in boys and girls. Three of the four articles reported slightly higher vaccination rates in girls than in boys. A meta-analysis was not conducted due to the heterogeneity of included data. Six additional barriers to immunization were identified: socioeconomic status, mother's education, geographic location, supply chain issues, father's education, number of children in the household, and media access. INTERPRETATION: The systematic review revealed the scarcity of available sex-stratified immunization data for Malagasy children. The evidence available was limited and heterogeneous, preventing researchers from conclusively confirming or denying differences in vaccine uptake based on sex. The low vaccination rates and additional barriers identified here indicate a need for increased focus on addressing the specific obstacles to vaccination in Madagascar. A more comprehensive assessment of sex-disaggregated vaccination status of Malagasy children and its relationship with such additional obstacles is recommended. Further investigation of potential differences in vaccination status will allow for the effective implementation of strategies to expand vaccine coverage in Madagascar equitably. FUNDING AND REGISTRATION: AH, BT, FM, GN, and RR are supported by a grant from the Bill and Melinda Gates Foundation (grant number: OPP1205877). The review protocol is registered in the Prospective Register of Systematic Reviews (PROSPERO ID: CRD42021265000)

    Table_4_Madagascar's EPI vaccine programs: A systematic review uncovering the role of a child's sex and other barriers to vaccination.DOCX

    No full text
    BackgroundImmunizations are one of the most effective tools a community can use to increase overall health and decrease the burden of vaccine-preventable diseases. Nevertheless, socioeconomic status, geographical location, education, and a child's sex have been identified as contributing to inequities in vaccine uptake in low- and middle-income countries (LMICs). Madagascar follows the World Health Organization's Extended Programme on Immunization (EPI) schedule, yet vaccine distribution remains highly inequitable throughout the country. This systematic review sought to understand the differences in EPI vaccine uptake between boys and girls in Madagascar.MethodsA systematic literature search was conducted in August 2021 through MEDLINE, the Cochrane Library, Global Index Medicus, and Google Scholar to identify articles reporting sex-disaggregated vaccination rates in Malagasy children. Gray literature was also searched for relevant data. All peer-reviewed articles reporting sex-disaggregated data on childhood immunizations in Madagascar were eligible for inclusion. Risk of bias was assessed using a tool designed for use in systematic reviews. Data extraction was conducted with a pre-defined data extraction tool. Sex-disaggregated data were synthesized to understand the impact of a child's sex on vaccination status.FindingsThe systematic search identified 585 articles of which a total of three studies were included in the final data synthesis. One additional publication was included from the gray literature search. Data from included articles were heterogeneous and, overall, indicated similar vaccination rates in boys and girls. Three of the four articles reported slightly higher vaccination rates in girls than in boys. A meta-analysis was not conducted due to the heterogeneity of included data. Six additional barriers to immunization were identified: socioeconomic status, mother's education, geographic location, supply chain issues, father's education, number of children in the household, and media access.InterpretationThe systematic review revealed the scarcity of available sex-stratified immunization data for Malagasy children. The evidence available was limited and heterogeneous, preventing researchers from conclusively confirming or denying differences in vaccine uptake based on sex. The low vaccination rates and additional barriers identified here indicate a need for increased focus on addressing the specific obstacles to vaccination in Madagascar. A more comprehensive assessment of sex-disaggregated vaccination status of Malagasy children and its relationship with such additional obstacles is recommended. Further investigation of potential differences in vaccination status will allow for the effective implementation of strategies to expand vaccine coverage in Madagascar equitably.Funding and registrationAH, BT, FM, GN, and RR are supported by a grant from the Bill and Melinda Gates Foundation (grant number: OPP1205877). The review protocol is registered in the Prospective Register of Systematic Reviews (PROSPERO ID: CRD42021265000).</p

    Table_3_Madagascar's EPI vaccine programs: A systematic review uncovering the role of a child's sex and other barriers to vaccination.DOCX

    No full text
    BackgroundImmunizations are one of the most effective tools a community can use to increase overall health and decrease the burden of vaccine-preventable diseases. Nevertheless, socioeconomic status, geographical location, education, and a child's sex have been identified as contributing to inequities in vaccine uptake in low- and middle-income countries (LMICs). Madagascar follows the World Health Organization's Extended Programme on Immunization (EPI) schedule, yet vaccine distribution remains highly inequitable throughout the country. This systematic review sought to understand the differences in EPI vaccine uptake between boys and girls in Madagascar.MethodsA systematic literature search was conducted in August 2021 through MEDLINE, the Cochrane Library, Global Index Medicus, and Google Scholar to identify articles reporting sex-disaggregated vaccination rates in Malagasy children. Gray literature was also searched for relevant data. All peer-reviewed articles reporting sex-disaggregated data on childhood immunizations in Madagascar were eligible for inclusion. Risk of bias was assessed using a tool designed for use in systematic reviews. Data extraction was conducted with a pre-defined data extraction tool. Sex-disaggregated data were synthesized to understand the impact of a child's sex on vaccination status.FindingsThe systematic search identified 585 articles of which a total of three studies were included in the final data synthesis. One additional publication was included from the gray literature search. Data from included articles were heterogeneous and, overall, indicated similar vaccination rates in boys and girls. Three of the four articles reported slightly higher vaccination rates in girls than in boys. A meta-analysis was not conducted due to the heterogeneity of included data. Six additional barriers to immunization were identified: socioeconomic status, mother's education, geographic location, supply chain issues, father's education, number of children in the household, and media access.InterpretationThe systematic review revealed the scarcity of available sex-stratified immunization data for Malagasy children. The evidence available was limited and heterogeneous, preventing researchers from conclusively confirming or denying differences in vaccine uptake based on sex. The low vaccination rates and additional barriers identified here indicate a need for increased focus on addressing the specific obstacles to vaccination in Madagascar. A more comprehensive assessment of sex-disaggregated vaccination status of Malagasy children and its relationship with such additional obstacles is recommended. Further investigation of potential differences in vaccination status will allow for the effective implementation of strategies to expand vaccine coverage in Madagascar equitably.Funding and registrationAH, BT, FM, GN, and RR are supported by a grant from the Bill and Melinda Gates Foundation (grant number: OPP1205877). The review protocol is registered in the Prospective Register of Systematic Reviews (PROSPERO ID: CRD42021265000).</p

    How Can the Typhoid Fever Surveillance in Africa and the Severe Typhoid Fever in Africa Programs Contribute to the Introduction of Typhoid Conjugate Vaccines?

    No full text
    BACKGROUND: The World Health Organization now recommends the use of typhoid conjugate vaccines (TCVs) in typhoid-endemic countries, and Gavi, the Vaccine Alliance, added TCVs into the portfolio of subsidized vaccines. Data from the Severe Typhoid Fever in Africa (SETA) program were used to contribute to TCV introduction decision-making processes, exemplified for Ghana and Madagascar. METHODS: Data collected from both countries were evaluated, and barriers to and benefits of introduction scenarios are discussed. No standardized methodological framework was applied. RESULTS: The Ghanaian healthcare system differs from its Malagasy counterpart: Ghana features a functioning insurance system, antimicrobials are available nationwide, and several sites in Ghana deploy blood culture-based typhoid diagnosis. A higher incidence of antimicrobial-resistant Salmonella Typhi is reported in Ghana, which has not been identified as an issue in Madagascar. The Malagasy people have a low expectation of provided healthcare and experience frequent unavailability of medicines, resulting in limited healthcare-seeking behavior and extended consequences of untreated disease. CONCLUSIONS: For Ghana, high typhoid fever incidence coupled with spatiotemporal heterogeneity was observed. A phased TCV introduction through an initial mass campaign in high-risk areas followed by inclusion into routine national immunizations prior to expansion to other areas of the country can be considered. For Madagascar, a national mass campaign followed by routine introduction would be the introduction scenario of choice as it would protect the population, reduce transmission, and prevent an often-deadly disease in a setting characterized by lack of access to healthcare infrastructure. New, easy-to-use diagnostic tools, potentially including environmental surveillance, should be explored and improved to facilitate identification of high-risk areas.status: publishe
    corecore