238 research outputs found

    Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions

    Get PDF
    Anthropogenic aerosol emissions lead to an increase in the amount of Cloud Condensation Nuclei and consequently an increase in cloud droplet number concentration and cloud albedo. The cor-responding negative radiative forcing due to aerosol cloud interactions (RFaci) is one of the most uncertain radiative forcing terms as reported in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). We show that previous observation-based studies underestimate aerosol-cloud interactions because they used measurements of aerosol optical properties that are not directly related to cloud formation and are hampered by measurement uncertainties. We have overcome this problem by the use of new polarimetric satellite retrievals of the relevant aerosol properties (aerosol number, size, shape). The resulting estimate of RFaci= -1.14 Wm−2(range be-tween -0.84 and -1.72 Wm−2) is more than a factor 2 stronger than the IPCC estimate that include

    Insights into Tikhonov regularization: application to trace gas column retrieval and the efficient calculation of total column averaging kernels

    Get PDF
    Insights are given into Tikhonov regularization and its application to the retrieval of vertical column densities of atmospheric trace gases from remote sensing measurements. The study builds upon the equivalence of the least-squares profile-scaling approach and Tikhonov regularization method of the first kind with an infinite regularization strength. Here, the vertical profile is expressed relative to a reference profile. On the basis of this, we propose a new algorithm as an extension of the least-squares profile scaling which permits the calculation of total column averaging kernels on arbitrary vertical grids using an analytic expression. Moreover, we discuss the effective null space of the retrieval, which comprises those parts of a vertical trace gas distribution which cannot be inferred from the measurements. Numerically the algorithm can be implemented in a robust and efficient manner. In particular for operational data processing with challenging demands on processing time, the proposed inversion method in combination with highly efficient forward models is an asset. For demonstration purposes, we apply the algorithm to CO column retrieval from simulated measurements in the 2.3 μm spectral region and to O<sub>3</sub> column retrieval from the UV. These represent ideal measurements of a series of spaceborne spectrometers such as SCIAMACHY, TROPOMI, GOME, and GOME-2. For both spectral ranges, we consider clear-sky and cloudy scenes where clouds are modelled as an elevated Lambertian surface. Here, the smoothing error for the clear-sky and cloudy atmosphere is significant and reaches several percent, depending on the reference profile which is used for scaling. This underlines the importance of the column averaging kernel for a proper interpretation of retrieved column densities. Furthermore, we show that the smoothing due to regularization can be underestimated by calculating the column averaging kernel on a too coarse vertical grid. For both retrievals, this effect becomes negligible for a vertical grid with 20–40 equally thick layers between 0 and 50 km

    Retrievals of atmospheric CO_2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects

    Get PDF
    Retrievals of atmospheric carbon dioxide (CO_2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO_2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO_2 errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol

    Retrieval of aerosol microphysical and optical properties over land using a multimode approach

    Get PDF
    Polarimeter retrievals can provide detailed and accurate information on aerosol microphysical and optical properties. The SRON aerosol algorithm is one of the few retrieval approaches that can fully exploit this information. The algorithm core is a two-mode retrieval in which effective radius (reff), effective variance (veff), refractive index, and column number are retrieved for each mode; the fraction of spheres for the coarse mode and an aerosol layer height are also retrieved. Further, land and ocean properties are retrieved simultaneously with the aerosol properties. In this contribution, we extend the SRON aerosol algorithm by implementing a multimode approach in which each mode has fixed reff and veff. In this way the algorithm obtains more flexibility in describing the aerosol size distribution and avoids the high nonlinear dependence of the forward model on the aerosol size parameters. Conversely, the approach depends on the choice of the modes. We compare the performances of multimode retrievals (varying the number of modes from 2 to 10) with those based on the original (parametric) two-mode approach. Experiments with both synthetic measurements and real measurements (PARASOL satellite level-1 data of intensity and polarization) are conducted. The synthetic data experiments show that multimode retrievals are good alternatives to the parametric two-mode approach. It is found that for multimode approaches, with five modes the retrieval results can already be good for most parameters. The real data experiments (validated with AERONET data) show that, for the aerosol optical thickness (AOT), multimode approaches achieve higher accuracy than the parametric two-mode approach. For single scattering albedo (SSA), both approaches have similar performances.</p

    Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases

    Get PDF
    International audienceSpectroscopic measurements of sunlight backscattered by the Earth's surface is a technique widely used for remote sensing of atmospheric constituent concentrations from space. Thereby, remote sensing of greenhouse gases poses particularly challenging accuracy requirements for instrumentation and retrieval algorithms which, in general, suffer from various error sources. Here, we investigate a method that helps disentangle sources of error for observations of sunlight backscattered from the glint spot on the ocean surface. The method exploits the backscattering characteristics of the ocean surface, which is bright for glint geometry but dark for off-glint angles. This property allows for identifying a set of clean scenes where light scattering due to particles in the atmosphere is negligible such that uncertain knowledge of the lightpath can be excluded as a source of error. We apply the method to more than 3 yr of ocean-glint measurements by the Thermal And Near infrared Sensor for carbon Observation (TANSO) Fourier Transform Spectrometer (FTS) onboard the Greenhouse Gases Observing Satellite (GOSAT), which aims at measuring carbon dioxide (CO2) and methane (CH4) concentrations. The proposed method is able to clearly monitor recent improvements in the instrument calibration of the oxygen (O2) A-band channel and suggests some residual uncertainty in our knowledge about the instrument. We further assess the consistency of CO2 retrievals from several absorption bands between 6400 cm-1(1565 nm) and 4800 cm-1(2100 nm) and find that the absorption bands commonly used for monitoring of CO2 dry air mole fractions from GOSAT allow for consistency better than 1.5 ppm. Usage of other bands reveals significant inconsistency among retrieved CO2 concentrations pointing at inconsistency of spectroscopic parameters. © 2013 Author(s)

    Assimilation of POLDER observations to estimate aerosol emissions

    Get PDF
    We apply a local ensemble transform Kalman smoother (LETKS) in combination with the global aerosol–climate model ECHAM–HAM to estimate aerosol emissions from POLDER-3/PARASOL (POLarization and Directionality of the Earth's Reflectances) observations for the year 2006. We assimilate aerosol optical depth at 550 mnm (AOD550), the Ångström exponent at 550 and 865 nm (AE550–865), and single-scattering albedo at 550 nm (SSA550) in order to improve modeled aerosol mass, size and absorption simultaneously. The new global aerosol emissions increase to 1419 Tg yr−1 (+28 %) for dust, 1850 Tg yr−1 (+75 %) for sea salt, 215 Tg yr−1 (+143 %) for organic aerosol and 13.3 Tg yr−1 (+75 %) for black carbon, while the sulfur dioxide emissions increase to 198 Tg yr−1 (+42 %) and the total deposition of sulfates to 293 Tg yr−1 (+39 %). Organic and black carbon emissions are much higher than their prior values from bottom-up inventories, with a stronger increase in biomass burning sources (+193 % and +90 %) than in anthropogenic sources (115 % and 70 %). The evaluation of the experiments with POLDER (assimilated) and AERONET as well as MODIS Dark Target (independent) observations shows a clear improvement compared with the ECHAM–HAM control run. Specifically based on AERONET, the global mean error in AOD550 improves from −0.094 to −0.006, while absorption aerosol optical depth at 550 nm (AAOD550) improves from −0.009 to −0.004 after the assimilation. A smaller improvement is also observed in the AE550–865 mean absolute error (from 0.428 to 0.393), with a considerably higher improvement over isolated island sites at the ocean. The new dust emissions are closer to the ensemble median of AEROCOM I, AEROCOM III and CMIP5 as well as some of the previous assimilation studies. The new sea salt emissions have become closer to the reported emissions from previous studies. Indications of a missing fraction of coarse dust and sea salt particles are discussed. The biomass burning changes (based on POLDER) can be used as alternative biomass burning scaling factors for the Global Fire Assimilation System (GFAS) inventory distinctively estimated for organic carbon (2.93) and black carbon (1.90) instead of the recommended scaling of 3.4 (Kaiser et al., 2012). The estimated emissions are highly sensitive to the relative humidity due to aerosol water uptake, especially in the case of sulfates. We found that ECHAM–HAM, like most of the global climate models (GCMs) that participated in AEROCOM and CMIP6, overestimated the relative humidity compared with ERA5 and as a result the water uptake by aerosols, assuming the kappa values are not underestimated. If we use the ERA5 relative humidity, sulfate emissions must be further increased, as modeled sulfate AOD is lowered. Specifically, over East Asia, the lower AOD can be attributed to the underestimated precipitation and the lack of simulated nitrates in the model.</p

    Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    Get PDF
    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval

    Aerosol information content analysis of multi-angle high spectral resolution measurements and its benefit for high accuracy greenhouse gas retrievals

    Get PDF
    New generations of space-borne spectrometers for the retrieval of atmospheric abundances of greenhouse gases require unprecedented accuracies as atmospheric variability of long-lived gases is very low. These instruments, such as GOSAT and OCO-2, typically use a high spectral resolution oxygen channel (O_2 A-band) in addition to CO_2 and CH_4 channels to discriminate changes in the photon path-length distribution from actual trace gas amount changes. Inaccurate knowledge of the photon path-length distribution, determined by scatterers in the atmosphere, is the prime source of systematic biases in the retrieval. In this paper, we investigate the combined aerosol and greenhouse gas retrieval using multiple satellite viewing angles simultaneously. We find that this method, hitherto only applied in multi-angle imagery such as from POLDER or MISR, greatly enhances the ability to retrieve aerosol properties by 2–3 degrees of freedom. We find that the improved capability to retrieve aerosol parameters significantly reduces interference errors introduced into retrieved CO_2 and CH_4 total column averages. Instead of focussing solely on improvements in spectral and spatial resolution, signal-to-noise ratios or sampling frequency, multiple angles reduce uncertainty in space based greenhouse gas retrievals more effectively and provide a new potential for dedicated aerosols retrievals
    • …
    corecore