51 research outputs found

    Cold water immersion of the hand and forearm during half-time improves intermittent exercise performance in the heat

    Get PDF
    The present study aimed to investigate the effect of cold water immersion of the hand and forearm during half-time (HT) on intermittent exercise performance and thermoregulation by imitating intermittent athletic games in the heat. In a randomized crossover design, 11 physically active men performed the first half (first and second block) and second half (third and fourth block) intermittent cycling exercise protocol, which consisted of a 5-s maximal power pedalling (body weight × 0.075 kp) every minute separated by 25-s of unloaded pedalling and rest (30 s) in the heat (33°C, 50% relative humidity). The two-halves were separated by a 15-min HT. During HT, the participants were assigned to the CON (sedentary resting) or COOL (immersion of hands and forearms in cold water at 15–17°C) condition. The mean power output in the second half was significantly greater (third and fourth block: p < 0.05) in the COOL than in the CON condition. Moreover, there was a significant decrease in the rectal (0.54 ± 0.17°C, p < 0.001) and mean skin (1.86 ± 0.34°C, p < 0.05) temperatures of the COOL condition during HT. Furthermore, the heart rate (16 ± 7 bpm, p < 0.05) and skin blood flow (40.2 ± 10.5%, p < 0.001) decreased at the end of HT in the COOL condition. In the second half, thermal sensation was more comfortable in the COOL condition (p < 0.001). Cold water immersion of the hand and forearm during HT improved physiological and reduced perceived heat stress. Moreover, it prevented a reduction in intermittent exercise performance in the second half

    Large edge magnetism in oxidized few-layer black phosphorus nanomeshes

    Get PDF
    The formation and control of a room-temperature magnetic order in two-dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are ~100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements

    FEM Analysis for Sinusoidal Perturbation of Hydrogen Permeation into a Steel Sheet

    Get PDF
    Numerical calculation for the diffusion problem of hydrogen absorbed in a steel sheet during hydrogen permeation measurement using a double electrochemical cell was carried out. The finite element method (FEM) was applied to obtain the concentration distribution of hydrogen expressed by one- or two-dimensional Fick’s laws in the sheet, assuming that hydrogen concentration at the hydrogen entry interface was perturbed sinusoidally and both the hydrogen entry and exit reactions were in a mass-transport controlled process. From a comparison with experimental results reported previously, in which a phase shift from entry current to exit current waves observed on a single grain of the specimen sheet was at least two-times larger than that on two grains, it was estimated that the diffusion coefficient at a grain boundary located between two grains was five orders in magnitude larger than that on a single grain

    Rapid Method to Measure Hydrogen Diffusion Coefficient in Metal Using a Multi-sine Wave Signal

    No full text
    The electrochemical hydrogen penetration measurement technique, to which a sinusoidal perturbation method was applied, was modified using a signal containing multiple frequency components. The technique was successfully applied to measurement of the hydrogen diffusion coefficient in a ferric sheet specimen. A series of numerical calculations for the technique, in which the constituent frequencies of the signal were selected from the measurement result, also provided the same diffusion coefficient and verified the validity of the technique. The use of this technique enables rapid determination of the hydrogen diffusion coefficient in a specimen
    corecore