779 research outputs found

    Exact shock solution of a coupled system of delay differential equations: a car-following model

    Full text link
    In this paper, we present exact shock solutions of a coupled system of delay differential equations, which was introduced as a traffic-flow model called {\it the car-following model}. We use the Hirota method, originally developed in order to solve soliton equations. %While, with a periodic boundary condition, this system has % a traveling-wave solution given by elliptic functions. The relevant delay differential equations have been known to allow exact solutions expressed by elliptic functions with a periodic boundary conditions. In the present work, however, shock solutions are obtained with open boundary, representing the stationary propagation of a traffic jam.Comment: 6 pages, 2 figure

    Detection of an SO2 plume over Sapporo, Japan from the eruption of Mt. Kasatochi using a balloon sounding technique

    Get PDF
    During the month of August 2008, 10 ozonesondes were launched from Hokkaido University in Sapporo, Japan as part of a study to examine regional pollution during the Olympic period. Seven of these soundings included a second instrument with a filter designed to remove SO2 from the intake air stream. SO2 interferes with the normal chemistry of the electrochemical cell (ECC) method for ozone detection, with the net result being that each molecule of SO2 registers as minus one molecule of O3. Thus the unfiltered sonde reports [O3] - [SO2] while the filtered sonde reports [O3]. Laboratory tests prior to launch indicate that the SO2 filter is ~87% effective, while destroying little to no O3. The difference between the filtered and unfiltered readings is ~[SO2]. We demonstrate the effectiveness of this technique in the lower and middle troposphere by examining profiles both with and without SO2 present. Ozone Monitoring Instrument (OMI) SO2 data (Krotkov et al., 2006, 2008) and trajectories from the NASA Goddard Trajectory model (Schoeberl & Sparling, 1995) connect the SO2 detected by our balloon borne instruments over Hokkaido, Japan 21 – 22 August to the plume from the volcanic eruption of Mt. Kasatochi 7 – 9 August

    Complete Nucleotide Sequence of the Chloroplast Genome from a Leptosporangiate Fer, Adiantum capillus-veneris L.

    Get PDF
    We determined the complete nucleotide sequence of the chloroplast genome of the leptosporangiate fern, Adiantum capillus-veneris L. (Pteridaceae). The circular genome is 150,568 bp, with a large single-copy region (LSC) of 82,282 bp, a small-single copy region (SSC) of 21,392 bp and inverted repeats (IR) of 23,447 bp each. We compared the sequence to other published chloroplast genomes to infer the location of putative genes. When the IR is considered only once, we assigned 118 genes, of which 85 encode proteins, 29 encode tRNAs and 4 encode rRNAs. Four protein-coding genes, all four rRNA genes and six tRNA genes occur in the IR. Most (57) putative protein-coding genes appear to start with an ATG codon, but we also detected five other possible start codons, some of which suggest tRNA editing. We also found 26 apparent stop codons in 18 putative genes, also suggestive of RNA editing. We found all but one of the tRNA genes necessary to encode the complete repertoire required for translation. The missing trnK gene appears to have been disrupted by a large inversion, relative to other published chloroplast genomes. We detected several structural rearrangements that may provide useful information for phylogenetic studies

    Harmonic Superspace Gaugeon Formalism for the ABJM Theory

    Full text link
    In this paper we will analyse the ABJM theory in harmonic superspace. The harmonic superspace variables will be parameterized by the coset SU(2)/U(1)SU(2)/U(1) and thus will have manifest N=3\mathcal{N} =3 supersymmetry. We will study the quantum gauge transformations and the BRST transformations of this theory in gaugeon formalism. We will use this BRST symmetry to project out the physical sub-space from the total Hilbert space. We will also show that the evolution of the S\mathcal{S}-matrix is unitary for this ABJM theory in harmonic superspace.Comment: 11, pages, 0 figures, accepted for publication in Mod. Phys. Lett.

    An Analysis of Tropical Transport: Influence of the Quasi-biennial Oscillation

    Get PDF
    An analysis of over 4 years of Upper Atmosphere Research Satellite (UARS) measurements of CH4, HF, O3, and zonal wind are used to study the influence of the quasi-biennial oscillation (QBO) on constituent transport in the tropics. At the equator, spectral analysis of the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) observations reveals QBO signals in constituent and temperature fields at altitudes between 20 and 45 km. Between these altitudes, the location of the maximum QBO amplitude roughly corresponds with the location of the largest vertical gradient in the constituent field. Thus, at 40 km where CH4 and HF have strong vertical gradients, QBO signals are correspondingly large, while at lower altitudes where the vertical gradients are weak, so are the QBO variations. Similarly, ozone, which is largely under dynamical control below 30 km in the tropics, has a strong QBO signal in the region of sharp vertical gradients (∼28 km) below the ozone peak. Above 35 km, annual and semi-annual variations are also found to be important components of the variability of long-lived tracers. Therefore, above 30 km, the variability in CH4 and HF at the equator is represented by a combination of semiannual, annual, and QBO timescales. A one-dimensional vertical transport model is used to further investigate the influence of annual and QBO variations on tropical constituent fields. QBO-induced vertical motions are calculated from observed high resolution Doppler imager (HRDI) zonal winds at the equator, while the mean annually varying tropical ascent rate is obtained from the Goddard two-dimensional model. Model simulations of tropical CH4 confirm the importance of both the annual cycle and the QBO in describing the HALOE CH4 observations above 30 km. Estimates of the tropical ascent rate and the variation due to the annual cycle and QBO are also discussed

    Quasi-Solitons in Dissipative Systems and Exactly Solvable Lattice Models

    Full text link
    A system of first-order differential-difference equations with time lag describes the formation of density waves, called as quasi-solitons for dissipative systems in this paper. For co-moving density waves, the system reduces to some exactly solvable lattice models. We construct a shock-wave solution as well as one-quasi-soliton solution, and argue that there are pseudo-conserved quantities which characterize the formation of the co-moving waves. The simplest non-trivial one is given to discuss the presence of a cascade phenomena in relaxation process toward the pattern formation.Comment: REVTeX, 4 pages, 1 figur

    Spin 3/2 dimer model

    Full text link
    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter

    The influence of maternal unhealthy diet on maturation of offspring gut microbiota in rat

    Get PDF
    Background Despite well-known effects of diet on gut microbiota diversity, relatively little is known about how maternal diet quality shapes the longitudinal maturation of gut microbiota in offspring. To investigate, we fed female rats standard chow (Chow) or a western-style, high-choice cafeteria diet (Caf) prior to and during mating, gestation and lactation. At weaning (3 weeks), male and female offspring were either maintained on their mother’s diet (ChowChow, CafCaf groups) or switched to the other diet (ChowCaf, CafChow). Fecal microbial composition was assessed in dams and longitudinally in offspring at 3, 7 and 14 weeks of age. Results The effect of maternal diet on maturation of offspring gut microbiota was assessed by α- and β-diversities, Deseq2/LEfSe, and SourceTracker analyses. Weanling gut microbiota composition was characterised by reduced α- and β-diversity profiles that clustered away from dams and older siblings. After weaning, offspring gut microbiota came to resemble an adult-like gut microbiota, with increased α-diversity and reduced dissimilarity of β-diversity. Similarly, Deseq2/LEfSe analyses found fewer numbers of altered operational taxonomic units (OTUs) between groups from weaning to adulthood. SourceTracker analyses indicated a greater overall contribution of Caf mothers’ microbial community (up to 20%) to that of their offspring than the contribution of Chow mothers (up to 8%). Groups maintained on the maternal diet (ChowChow, CafCaf), versus those switched to the other diet (ChowCaf, CafChow) post-weaning significantly differed from each other at 14 weeks (Permutational Multivariate Analysis of Variance), indicating interactive effects of maternal and post-weaning diet on offspring gut microbiota maturation. Nevertheless, this developmental trajectory was unaffected by sex and appeared consistent between ChowChow, CafCaf, ChowCaf and CafChow groups. Conclusions Introducing solid food at weaning triggered the maturation of offspring gut microbiota to an adult-like profile in rats, in line with previous human studies. Postweaning Caf diet exposure had the largest impact on offspring gut microbiota, but this was modulated by maternal diet history. An unhealthy maternal Caf diet did not alter the developmental trajectory of offspring gut microbiota towards an adult-like profile, insofar as it did not prevent the age-associated increase in α-diversity and reduction in β-diversity dissimilarity

    Noncommutative Geometry, Extended W(infty) Algebra and Grassmannian Solitons in Multicomponent Quantum Hall Systems

    Full text link
    Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of NN-component electrons at the integer filling factor ν=k≤N\nu=k\leq N. The basic algebra is the SU(N)-extended W∞_{\infty}. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,kG_{N,k} sigma model, and the dynamical field is the Grassmannian GN,kG_{N,k} field, describing k(N−k)k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).Comment: 15 pages (no figures

    Multi-Bunch Solutions of Differential-Difference Equation for Traffic Flow

    Full text link
    Newell-Whitham type car-following model with hyperbolic tangent optimal velocity function in a one-lane circuit has a finite set of the exact solutions for steady traveling wave, which expressed by elliptic theta function. Each solution of the set describes a density wave with definite number of car-bunches in the circuit. By the numerical simulation, we observe a transition process from a uniform flow to the one-bunch analytic solution, which seems to be an attractor of the system. In the process, the system shows a series of cascade transitions visiting the configurations closely similar to the higher multi-bunch solutions in the set.Comment: revtex, 7 pages, 5 figure
    • …
    corecore