947 research outputs found
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments
In the current galaxy formation scenarios, two physical phenomena are invoked
to build disk galaxies: hierarchical mergers and more quiescent external gas
accretion, coming from intergalactic filaments. Although both are thought to
play a role, their relative importance is not known precisely. Here we consider
the constraints on these scenarios brought by the observation-deduced star
formation history on the one hand, and observed dynamics of galaxies on the
other hand: the high frequency of bars and spirals, the high frequency of
perturbations such as lopsidedness, warps, or polar rings.
All these observations are not easily reproduced in simulations without
important gas accretion. N-body simulations taking into account the mass
exchange between stars and gas through star formation and feedback, can
reproduce the data, only if galaxies double their mass in about 10 Gyr through
gas accretion. Warped and polar ring systems are good tracers of this
accretion, which occurs from cold gas which has not been virialised in the
system's potential. The relative importance of these phenomena are compared
between the field and rich clusters. The respective role of mergers and gas
accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks
of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed.
D. Block et al., Kluwe
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.
Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks
Antihypertensive, antidyslipidemic and endothelial modulating activities of Orchis mascula
The objective of this study was to investigate the possible mode(s) of action for the medicinal use of Orchis mascula (OM) (family Orchidaceae) in hypertension and dyslipidemia. In spontaneously hypertensive rats (SHRs), OM significantly (
AN EXAMINATION OF INTEGRATIVE ISLAMIC EDUCATION AT SMP INTEGRAL HIDAYATULLAH KENDARI
The integrative curriculum plays a crucial role in fostering a holistic learning experience by amalgamating general knowledge with religious values. This research constitutes a case study of the integrative curriculum framework at Hidayatullah Kendari Integral Junior High School, aiming to elucidate the curriculum content, presentation methodologies, and pedagogical strategies employed by teachers to incorporate religious elements into educational materials and activities. Data were collected through document analysis, observations, and interviews with school administrators and teachers. The data analysis procedure involved verifying and categorizing the data, presenting it in accordance with the research questions, conducting a comprehensive analysis using curriculum integration theory and prior research findings, and drawing conclusions. The findings reveal that the school's curriculum, grounded in Qur'anic principles, continues to incorporate the government curriculum as its core, augmented by local content and religious development. The integration of religion into the educational process employs a connected model, utilizing pedagogical methods that align with Islamic educational principles, thereby enabling students to contextualize the acquired knowledge within a religious framework. The implications of this study suggest that teachers must enhance their religious knowledge in tandem with their subject matter expertise. Furthermore, religious educators provide additional religious instruction beyond regular school hours, necessitating students' residency in the school dormitory.
Abstrak:
Kurikulum integratif memainkan peran penting dalam menciptakan pengalaman belajar yang holistik dengan menggabungkan ilmu pengetahuan umum dan nilai-nilai keagamaan. Penelitian ini merupakan studi kasus terhadap format kurikulum integratif di SMP Integral Hidayatullah Kendari, dengan tujuan mendeskripsikan format muatan kurikulum, metode penyajian, dan teknik yang digunakan oleh guru dalam mengintegrasikan agama ke dalam materi dan kegiatan pembelajaran. Data dikumpulkan melalui analisis dokumen, observasi, dan wawancara dengan kepala sekolah dan guru. Proses analisis data melibatkan verifikasi dan sortir data, penyajian data sesuai dengan pertanyaan penelitian, pendalaman menggunakan teori integrasi kurikulum serta temuan penelitian sebelumnya, dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa format kurikulum di sekolah ini berbasis pada al-Qur’an dengan tetap mengadopsi kurikulum pemerintah sebagai kurikulum inti, yang dilengkapi dengan muatan lokal dan pengembangan keagamaan. Integrasi agama dalam pembelajaran menggunakan model connected, di mana metode-metode pengajaran diintegrasikan dengan metode-metode pendidikan dalam Islam. Dengan demikian, kegiatan pembelajaran membantu siswa memahami pengetahuan yang diajarkan secara kontekstual berdasarkan ajaran agama. Implikasinya, guru harus meningkatkan pengetahuan keagamaan mereka seiring dengan peningkatan pengetahuan terhadap mata pelajaran. Guru agama juga memberikan pelajaran tambahan di luar jam sekolah, yang mengharuskan siswa untuk tinggal di asrama sekolah
Candida glabrata : a review of its features and resistance
Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.The authors are grateful to strategic project PTDC/SAU-MIC/119069/2010 for the financial support to the research center and for Celia F. Rodrigues' grant
Environmental factors modulating the stability and enzymatic activity of the Petrotoga mobilis Esterase (PmEst)
Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required
- …
