18 research outputs found

    Gender differences in the temporal voice areas

    Get PDF
    There is not only evidence for behavioral differences in voice perception between female and male listeners, but also recent suggestions for differences in neural correlates between genders. The fMRI functional voice localizer (comprising a univariate analysis contrasting stimulation with vocal versus non-vocal sounds) is known to give robust estimates of the temporal voice areas (TVAs). However there is growing interest in employing multivariate analysis approaches to fMRI data (e.g. multivariate pattern analysis; MVPA). The aim of the current study was to localize voice-related areas in both female and male listeners and to investigate whether brain maps may differ depending on the gender of the listener. After a univariate analysis, a random effects analysis was performed on female (n = 149) and male (n = 123) listeners and contrasts between them were computed. In addition, MVPA with a whole-brain searchlight approach was implemented and classification maps were entered into a second-level permutation based random effects models using statistical non-parametric mapping (SnPM; Nichols & Holmes 2002). Gender differences were found only in the MVPA. Identified regions were located in the middle part of the middle temporal gyrus (bilateral) and the middle superior temporal gyrus (right hemisphere). Our results suggest differences in classifier performance between genders in response to the voice localizer with higher classification accuracy from local BOLD signal patterns in several temporal-lobe regions in female listeners

    Adaptive methods exploiting the time structure in EEG for self-paced brain-computer interfaces

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Conditional random fields as classifiers for three-class motor-imagery brain–computer interfaces

    No full text
    Conditional random fields (CRFs) are demonstrated to be a discriminative model able to exploit the temporal properties of EEG data obtained during synchronous three-class motor-imagery-based brain-computer interface experiments. The advantages of CRFs over the hidden Markov model (HMM) are both theoretical and practical. Theoretically, CRFs focus on modeling latent variables (labels) rather than both observation and latent variables. Furthermore, CRFs' loss function is convex, guaranteeing convergence to the global optimum. Practically, CRFs are much less prone to singularity problems. This property allows for the use of both time- and frequency-based features, such as band power. The HMM, on the other hand, requires temporal features such as autoregressive coefficients. A CRF-based classifier is tested on 13 subjects. Significant improvement is found when applying CRFs over HMM- and LDA-based classifiers. © 2011 IOP Publishing Ltd

    Unsupervised adaptive GMM for BCI

    No full text
    An unsupervised adaptive Gaussian mixture model is introduced for online brain-computer interfaces (BCI). The method is tested on two BCI data sets, demonstrating significant performance improvement in comparison with a static model. ©2009 IEEE

    Sequential EM for Unsupervised Adaptive Gaussian Mixture Model Based Classifier

    No full text
    In this paper we present a sequential expectation maximization algorithm to adapt in an unsupervised manner a Gaussian mixture model for a classification problem. The goal is to adapt the Gaussian mixture model to cope with the non-stationarity in the data to classify and hence preserve the classification accuracy. Experimental results on synthetic data show that this method is able to learn the time-varying statistical features in data by adapting a Gaussian mixture model online. In order to control the adaptation method and to ensure the stability of the adapted model, we introduce an index to detect when the adaptation would fail. © 2009 Springer Berlin Heidelberg

    Temporal modeling of EEG during self-paced hand movement and its application in onset detection

    No full text
    The temporal behavior of electroencephalography (EEG) recorded during self-paced hand movement is investigated for the purpose of improving EEG classification in general and onset detection in particular. Four temporal models based on conditional random fields are developed and applied to classify EEG data into the movement or idle class. They are further used for building an onset detection system and tested on self-paced EEG signals recorded from five subjects. True-false rates ranging from 74% to 98% have been achieved on different subjects, with significant improvement over non-temporal methods. The effectiveness of the proposed methods suggests their potential use in self-paced brain-computer interfaces. © 2011 IOP Publishing Ltd

    It doesn't matter what you say: FMRI correlates of voice learning and recognition independent of speech content

    Get PDF
    International audienceListeners can recognize newly learned voices from previously unheard utterances, suggesting the acquisition of high-level speech-invariant voice representations during learning. Using functional magnetic resonance imaging (fMRI) we investigated the anatomical basis underlying the acquisition of voice representations for unfamiliar speakers independent of speech, and their subsequent recognition among novel voices. Specifically, listeners studied voices of unfamiliar speakers uttering short sentences and subsequently classified studied and novel voices as "old" or "new" in a recognition test. To investigate "pure" voice learning, i.e., independent of sentence meaning, we presented German sentence stimuli to non-German speaking listeners. To disentangle stimulus-invariant and stimulus-dependent learning, during the test phase we contrasted a "same sentence" condition in which listeners heard speakers repeating the sentences from the preceding study phase, with a "different sentence" condition. Voice recognition performance was above chance in both conditions although, as expected, performance was higher for same than for different sentences. During study phases activity in the left inferior frontal gyrus (IFG) was related to subsequent voice recognition performance and same versus different sentence condition, suggesting an involvement of the left IFG in the interactive processing of speaker and speech information during learning. Importantly, at test reduced activation for voices correctly classified as "old" compared to "new" emerged in a network of brain areas including temporal voice areas (TVAs) of the right posterior superior temporal gyrus (pSTG), as well as the right inferior/middle frontal gyrus (IFG/MFG), the right medial frontal gyrus, and the left caudate. This effect of voice novelty did not interact with sentence condition, suggesting a role of temporal voice-selective areas and extra-temporal areas in the explicit recognition of learned voice identity, independent of speech content

    Multi-objective evolutionary methods for channel selection in Brain-Computer Interfaces: Some preliminary experimental results

    No full text
    This paper presents a comparative study among three evolutionary and search based methods to solve the problem of channel selection for Brain-Computer Interface (BCI) systems. Multi-Objective Particle Swarm Optimization (MOPSO) method is compared to Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and single objective Sequential Floating Forward Search (SFFS) method. The methods are tested on the first data set for BCI-Competition IV. The results show the usefulness of the multi-objective evolutionary methods in achieving accuracy results similar to the extensive search method with fewer channels and less computational time. © 2010 IEEE
    corecore