3,520 research outputs found

    Development of polyisocyanurate pour foam formulation for space shuttle external tank thermal protection system

    Get PDF
    Four commercially available polyisocyanurate polyurethane spray-foam insulation formulations are used to coat the external tank of the space shuttle. There are several problems associated with these formulations. For example, some do not perform well as pourable closeout/repair systems. Some do not perform well at cryogenic temperatures (poor adhesion to aluminum at liquid nitrogen temperatures). Their thermal stability at elevated temperatures is not adequate. A major defect in all the systems is the lack of detailed chemical information. The formulations are simply supplied to NASA and Martin Marietta, the primary contractor, as components; Part A (isocyanate) and Part B (poly(s) and additives). Because of the lack of chemical information the performance behavior data for the current system, NASA sought the development of a non-proprietary room temperature curable foam insulation. Requirements for the developed system were that it should exhibit equal or better thermal stability both at elevated and cryogenic temperatures with better adhesion to aluminum as compared to the current system. Several formulations were developed that met these requirements, i.e., thermal stability, good pourability, and good bonding to aluminum

    Shining new light on the multifaceted dissociative photoionisation dynamics of CCl<sub>4</sub>

    Get PDF
    Statisticality restored: high internal energy CCl4+ dissociates mostly according to statistical theory, and an intersystem crossing path precludes fluorescence.</p

    Lack of Genetic Interaction between Tbx20 and Tbx3 in Early Mouse Heart Development

    Get PDF
    Members of the T-box family of transcription factors are important regulators orchestrating the complex regionalization of the developing mammalian heart. Individual mutations in Tbx20 and Tbx3 cause distinct congenital heart abnormalities in the mouse: Tbx20 mutations result in failure of heart looping, developmental arrest and lack of chamber differentiation, while hearts of Tbx3 mutants progress further, loop normally but show atrioventricular convergence and outflow tract defects. The two genes have overlapping areas of expression in the atrioventricular canal and outflow tract of the heart but their potential genetic interaction has not been previously investigated. In this study we produced compound mutants to investigate potential genetic interactions at the earliest stages of heart development. We find that Tbx20; Tbx3 double heterozygous mice are viable and fertile with no apparent abnormalities, while double homozygous mutants are embryonic lethal by midgestation. Double homozygous mutant embryos display abnormal cardiac morphogenesis, lack of heart looping, expression patterns of cardiac genes and time of death that are indistinguishable from Tbx20 homozygous mutants. Prior to death, the double homozygotes show an overall developmental delay similar to Tbx3 homozygous mutants. Thus the effects of Tbx20 are epistatic to Tbx3 in the heart but Tbx3 is epistatic to Tbx20 with respect to developmental delay

    CompGO: an R package for comparing and visualizing gene ontology enrichment differences between DNA binding experiments

    Get PDF
    Background: Gene ontology (GO) enrichment is commonly used for inferring biological meaning from systems biology experiments. However, determining differential GO and pathway enrichment between DNA-binding experiments or using the GO structure to classify experiments has received little attention. Results: Herein, we present a bioinformatics tool, CompGO, for identifying Differentially Enriched Gene Ontologies, called DiEGOs, and pathways, through the use of a z-score derivation of log odds ratios, and visualizing these differences at GO and pathway level. Through public experimental data focused on the cardiac transcription factor NKX2-5, we illustrate the problems associated with comparing GO enrichments between experiments using a simple overlap approach. Conclusions: We have developed an R/Bioconductor package, CompGO, which implements a new statistic normally used in epidemiological studies for performing comparative GO analyses and visualizing comparisons from .BED data containing genomic coordinates as well as gene lists as inputs. We justify the statistic through inclusion of experimental data and compare to the commonly used overlap method. CompGO is freely available as a R/Bioconductor package enabling easy integration into existing pipelines and is available at: http://www.bioconductor.org/packages/release/bioc/html/CompGO.html packages/release/bioc/html/CompGO.htm

    Consistency of the Health of the Nation Outcome Scales (HoNOS) at inpatient-to-community transition

    Full text link
    OBJECTIVES: The Health of the Nation Outcome Scales (HoNOS) are mandated outcome-measures in many mental-health jurisdictions. When HoNOS are used in different care settings, it is important to assess if setting specific bias exists. This article examines the consistency of HoNOS in a sample of psychiatric patients transitioned from acute inpatient care and community centres. SETTING: A regional mental health service with both acute and community facilities. PARTICIPANTS: 111 psychiatric patients were transferred from inpatient care to community care from 2012 to 2014. Their HoNOS scores were extracted from a clinical database; Each inpatient-discharge assessment was followed by a community-intake assessment, with the median period between assessments being 4 days (range 0-14). Assessor experience and professional background were recorded. PRIMARY AND SECONDARY OUTCOME MEASURES: The difference of HoNOS at inpatient-discharge and community-intake were assessed with Pearson correlation, Cohen\u27s &kappa; and effect size. RESULTS: Inpatient-discharge HoNOS was on average lower than community-intake HoNOS. The average HoNOS was 8.05 at discharge (median 7, range 1-22), and 12.16 at intake (median 12, range 1-25), an average increase of 4.11 (SD 6.97). Pearson correlation between two total scores was 0.073 (95% CI -0.095 to 0.238) and Cohen\u27s &kappa; was 0.02 (95% CI -0.02 to 0.06). Differences did not appear to depend on assessor experience or professional background. CONCLUSIONS: Systematic change in the HoNOS occurs at inpatient-to-community transition. Some caution should be exercised in making direct comparisons between inpatient HoNOS and community HoNOS scores

    The molecular basis of antigenic variation among A(H9N2) avian influenza viruses

    Get PDF
    Avian influenza A(H9N2) viruses are an increasing threat to global poultry production and, through zoonotic infection, to human health where they are considered viruses with pandemic potential. Vaccination of poultry is a key element of disease control in endemic countries, but vaccine effectiveness is persistently challenged by the emergence of antigenic variants. Here we employed a combination of techniques to investigate the genetic basis of H9N2 antigenic variability and evaluate the role of different molecular mechanisms of immune escape. We systematically tested the influence of published H9N2 monoclonal antibody escape mutants on chicken antisera binding, determining that many have no significant effect. Substitutions introducing additional glycosylation sites were a notable exception, though these are relatively rare among circulating viruses. To identify substitutions responsible for antigenic variation in circulating viruses, we performed an integrated meta-analysis of all published H9 haemagglutinin sequences and antigenic data. We validated this statistical analysis experimentally and allocated several new residues to H9N2 antigenic sites, providing molecular markers that will help explain vaccine breakdown in the field and inform vaccine selection decisions. We find evidence for the importance of alternative mechanisms of immune escape, beyond simple modulation of epitope structure, with substitutions increasing glycosylation or receptor-binding avidity, exhibiting the largest impacts on chicken antisera binding. Of these, meta-analysis indicates avidity regulation to be more relevant to the evolution of circulating viruses, suggesting that a specific focus on avidity regulation is required to fully understand the molecular basis of immune escape by influenza, and potentially other viruses

    Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Get PDF
    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed

    The Hlx homeobox transcription factor is required early in enteric nervous system development

    Get PDF
    BACKGROUND: Development of the enteric nervous system (ENS) requires interactions between migrating neural crest cells and the nascent gastrointestinal tract that are dependent upon genes expressed by both cell compartments. Hlx, a homeobox transcription factor gene that is expressed in mouse intestinal and hepatic mesenchyme, is required for normal embryonic growth of intestine and liver, and the Hlx(-/- )genotype is embryonic lethal. We hypothesized that Hlx is required for ENS development. RESULTS: Enteric neurons were identified in Hlx(+/+ )and Hlx(-/- )mouse embryos by immunostaining of embryo sections for the neural markers PGP9.5 and Phox2b, or by staining for β-galactosidase in whole-mount embryos containing the dopamine β-hydroxylase-nLacZ transgene. In Hlx(+/+ )embryos, neural crest cells/enteric neurons have moved from the stomach into the intestine by E10.5. By contrast, neural crest cells/enteric neurons remain largely restricted to the lateral stomach mesenchyme of Hlx(-/- )embryos, with only a few scattered neural crest cells/enteric neurons in the intestine between E10.5–16.5. CONCLUSION: The Hlx homeobox transcription factor is required for early aspects of ENS development

    Sources of Sulfate Found in Mounds and Lakes at the Lewis Cliffs Ice Tongue, Transantarctic

    Get PDF
    Massive but highly localized Na-sulfate mounds (mirabilite, Na2SO4.10H2O) have been found at the terminal moraine of the Lewis Cliffs Ice Tongue (LCIT), Antarctica. (Sigma)34S and (Sigma)18O values of LCIT mirabilite range from +48.8 to +49.3% (CDT), and -16.6 to -17.1% (V-SMOW), respectively, while (Delta)17O average -0.37% (V-SMOW). LCIT mirabilite mounds are isotopically different from other mirabilite mounds found in coastal regions of Antarctica, which have isotope values close to seawater compositions. (Sigma)18O and (Delta)17O values suggest the incorporation of isotopically light glacial water. Data point to initial sulfate formation in an anoxic water body, either as a stratified anoxic deep lake on the surface, a sub-glacial water reservoir, or a sub-glacial lake. Several surface lakes of varying size are also present within this region of the LCIT, and in some cases are adjacent to the mirabilite mounds. O and D isotope compositions of surface lakes confirm they are derived from a mixture of glacial ice and snow that underwent moderate evaporation. (Sigma)18O and (Sigma)D (V-SMOW) values of snow, ice, and lake water range from -64.2 to -29.7%, and -456.0 to -231.7%, respectively. However, the isotope chemistry of these surface lakes is extremely different from the mounds. Dissolved SO4-2 (Sigma)34S and (Sigma)18O values range from +12.0 to +20.0% and -12.8 to -22.2% (the most negative (Sigma)18O of terrestrial sulfate ever reported), respectively, with sulfate (Delta)17O ranging from +0.93 to 2.24%. Ion chromatography data show that lake water is fresh to brackish in origin, with TDS less than 1500 ppm, and sulfate concentration less than 431 ppm. Isotope and chemical data suggest that these lakes are unlikely the source of the mirabilite mounds. We suggest that lake water sulfate is potentially composed of a mixture of atmospheric sulfate and minor components of sulfate of weathering origin, much like the sulfate in the polar plateau soils of the McMurdo Dry Valleys. A simple model explains mirabilite mound formation at the LCIT. Sulfur redox processes could occur sub-glacially as a result of liquid-water-based glacial conditions (Alpine style glacier), most likely formed by pressure melting of overlying ice (Aharon, GCA, 52, 2321-2331). We suggest that the aqueous base of the LCIT contains dissolved SO42- and is anoxic where sulfate reduction to H2S, HS-, or native sulfur takes place. Sulfide is removed by either precipitation as sulfide minerals or by escape of H2S (neither of which have been observed). Mirabilite precipitation is likely the result of evaporation or freezing of sulfate-rich brines as they reach the surface where they manifest themselves as mounds. Pressure from the overlying ice contributing to a pressure-melting scenario that creates the sub-glacial aqueous environment also contributes to the mechanism of upward transport of the sulfate-rich fluids. Further evidence to support this upward transport model comes from the nature of ice motion at the LCIT. Cassidy et al (Meteoritics, 27, 490-525, 1992) pointed out that it is the vertical ice motion in this area that creates the meteorite-stranding surface that could also account for upward transport of sulfate-rich fluids. Alternatively, mirabilite was deposited in a similar condition as present-day coastal Antarctica when the LCIT was wetter and warme
    • …
    corecore