627 research outputs found

    Interactions of ICRF waves with lower hybrid driven suprathermal electrons

    Get PDF

    Effects of fast Alfven waves in lower-hybrid current drive

    Get PDF

    Wilson line correlators in two-dimensional noncommutative Yang-Mills theory

    Get PDF
    We study the correlator of two parallel Wilson lines in two-dimensional noncommutative Yang-Mills theory, following two different approaches. We first consider a perturbative expansion in the large-N limit and resum all planar diagrams. The second approach is non-perturbative: we exploit the Morita equivalence, mapping the two open lines on the noncommutative torus (which eventually gets decompacted) in two closed Wilson loops winding around the dual commutative torus. Planarity allows us to single out a suitable region of the variables involved, where a saddle-point approximation of the general Morita expression for the correlator can be performed. In this region the correlator nicely compares with the perturbative result, exhibiting an exponential increase with respect to the momentum p.Comment: 21 pages, 1 figure, typeset in JHEP style; some formulas corrected in Sect.3, one reference added, results unchange

    Heterotic instantons and solitons in anomaly-free supergravity

    Full text link
    We extend the classical heterotic instanton solutions to all orders in α′\alpha' using the equations of anomaly-free supergravity, and discuss the relation between these equations and the string theory β\beta-functions.Comment: 10 page

    Two-dimensional non-commutative Yang-Mills theory: coherent effects in open Wilson line correlators

    Full text link
    A perturbative calculation of the correlator of three parallel open Wilson lines is performed for the U(N) theory in two non-commutative space-time dimensions. In the large-N planar limit, the perturbative series is fully resummed and asymptotically leads to an exponential increase of the correlator with the lengths of the lines, in spite of an interference effect between lines with the same orientation. This result generalizes a similar increase occurring in the two-line correlator and is likely to persist when more lines are considered provided they share the same direction.Comment: 22 pages, 1 figure, typeset in JHEP styl

    Residues and World-Sheet Instantons

    Full text link
    We reconsider the question of which Calabi-Yau compactifications of the heterotic string are stable under world-sheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0,2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. Here, we show that this cancellation follows directly from a residue theorem, whose proof relies only upon the right-moving world-sheet supersymmetries and suitable compactness properties of the (0,2) linear sigma model. Our residue theorem also extends to a new class of "half-linear" sigma models. Using these half-linear models, we show that heterotic compactifications on the quintic hypersurface in CP^4 for which the gauge bundle pulls back from a bundle on CP^4 are stable. Finally, we apply similar ideas to compute the superpotential contributions from families of membrane instantons in M-theory compactifications on manifolds of G_2 holonomy.Comment: 47 page

    Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)

    Full text link
    The \textit{Sun Watcher using Active Pixel system detector and Image Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2} (PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel centered at 174 \AA. These data, together with \textit{Atmospheric Imaging Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 and AIA 171 channels. We observe that bright points are seen in EUV channels corresponding to a magnetic-flux of the order of 101810^{18} Mx. We find that there exists a good correlation between total emission from the bright point in several UV\todash EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings and we have attempted to find the oscillation periods in bright points and their connection to magnetic flux changes. The observed periods are generally long (10\todash 25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions ∑i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and ∑i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ∀ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a c−c-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore