99 research outputs found

    IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell–dependent type 2 innate immunity

    Get PDF
    C57BL/6 (B6) and B6 background STAT6−/− mice pretreated with IL-18 plus IL-2 showed prominent intestinal mastocytosis and rapidly expelled implanted adult worms of the gastrointestinal nematode Strongyloides venezuelensis. In contrast, identically pretreated mast cell–deficient W/Wv mice failed to do so. Thus, activated mucosal mast cells (MMC) are crucial for parasite expulsion. B6 mice infected with S. venezuelensis third-stage larvae (L3) completed parasite expulsion by day 12 after infection, whereas IL-18−/− or IL-18Rα−/− B6 mice exhibited marked impairment in parasite expulsion, suggesting a substantial contribution of IL-18–dependent MMC activation to parasite expulsion. Compared with IL-18−/− or IL-18Rα−/− mice, S. venezuelensis L3–infected STAT6−/− mice have poorly activated MMC and sustained infection; although their IL-18 production is normal. Neutralization of IL-18 and IL-2 further reduces expulsion in infected STAT6−/− mice. These results suggest that collaboration between IL-18–dependent and Th2 cell–dependent mastocytosis is important for prompt parasite expulsion

    The role of B-cells in immunity against adult Strongyloides venezuelensis

    Get PDF
    BACKGROUND: Strongyloides venezuelensis has been used as a tool and model for strongyloidiasis research. Elimination of S. venezuelensis adult worms from mice has been particularly associated with proliferation and activation of intestinal mast cells and eosinophils. To date, the role of B-cells in the protective mechanism against adult Strongyloides infection in experimental animals has not been reported in the literature. Therefore, the present study was carried to investigate the role of B-lymphocytes in immunity against adult S. venezuelensis infection using mice with a targeted deletion of the JH locus. METHODS: JHD knockout mice with its wild-type Balb/c mice were infected by intra-duodenal implantation of adult S. venezuelensis. Fecal egg count, intestinal worm recovery, mucosal mast cells and eosinophils were counted. RESULTS: At day 11 post infection, parasites in wild-type mice stopped egg laying, while in JHD knockout mice parasites continued to excrete eggs until the end of the observation period, day 107. The higher number of parasite eggs expelled in the feces of JHD knockout infected mice was a consequence of higher worm burdens, which established in the small intestine of these animals. On the other hand worm fecundity was comparable in both groups of mice. Both B-cell-deficient mice and wild-type mice, showed an influx of mucosal mast cells and eosinophils. The absolute numbers in JHD knockout mice were lower than those seen in wild-type mice at day 11, but not to a level of significance. JHD knockout mice could not recover from infection despite the recruitment of both types of cells. CONCLUSION: Our findings highlight a role of B cells in mucosal immunity against invasion of adult S. venezuelensis and in its expulsion. Therefore, we conclude that B-cells together with mucosal mast cells and eosinophils, contribute to immunity against adult S. venezuelensis by mechanism(s) to be investigated

    Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    Get PDF
    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (

    Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus

    Get PDF
    Type 1 diabetes is a disease characterized by destruction of pancreatic β-cells, which leads to absolute deficiency of insulin secretion. Depending on the manner of onset and progression, it is classified as fulminant, acute-onset or slowly progressive type 1 diabetes. Here, we propose the diagnostic criteria for acute-onset type 1 diabetes mellitus. Among the patients who develop ketosis or diabetic ketoacidosis within 3 months after the onset of hyperglycemic symptoms and require insulin treatment continuously after the diagnosis of diabetes, those with anti-islet autoantibodies are diagnosed with \u27acute-onset type 1 diabetes mellitus (autoimmune)\u27. In contrast, those whose endogenous insulin secretion is exhausted (fasting serum C-peptide immunoreactivity <0.6 ng/mL) without verifiable anti-islet autoantibodies are diagnosed simply with \u27acute-onset type 1 diabetes mellitus\u27. Patients should be reevaluated after certain periods in case their statuses of anti-islet autoantibodies and/or endogenous insulin secretory capacity are unknown

    Meningitis patients with Angiostrongylus cantonensis may present without eosinophilia in the cerebrospinal fluid in northern Vietnam.

    Get PDF
    BACKGROUND: Eosinophilic meningitis (EM) is a rare clinical syndrome caused by both infectious and noninfectious diseases. In tropical pacific countries, Angiostrongylus cantonensis is the most common cause. However, the EM definition varies in the literature, and its relation to parasitic meningitis (PM) remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Adult and adolescent patients of 13 years old or above with suspected central nervous system (CNS) infections with abnormal CSF findings were prospectively enrolled at a tertiary referral hospital in Hanoi, Vietnam from June 2012 to May 2014. Patients with EM or suspected PM (EM/PM) were defined by the presence of either ≥10% eosinophils or an absolute eosinophil cell counts of ≥10/mm3 in the CSF or blood eosinophilia (>16% of WBCs) without CSF eosinophils. In total 679 patients were enrolled: 7 (1.03%) had ≥10% CSF eosinophilia, 20 (2.95%) had ≥10/mm3 CSF eosinophilia, and 7 (1.03%) had >16% blood eosinophilia. The patients with ≥10% CSF eosinophilia were significantly younger (p = 0.017), had a lower body temperature (p = 0.036) than patients with ≥10/mm3 CSF eosinophilia among whom bacterial pathogens were detected in 72.2% (13/18) of those who were tested by culture and/or PCR. In contrast, the characteristics of the patients with >16% blood eosinophilia resembled those of patients with ≥10% CSF eosinophilia. We further conducted serological tests and real-time PCR to identify A. cantonensis. Serology or real-time PCR was positive in 3 (42.8%) patients with ≥10% CSF eosinophilia and 6 (85.7%) patients with >16% blood eosinophilia without CSF eosinophils but none of patients with ≥10/mm3 CSF eosinophilia. CONCLUSIONS: The etiology of PM in northern Vietnam is A. cantonensis. The eosinophil percentage is a more reliable predictor of parasitic EM than absolute eosinophil count in the CSF. Patients with PM may present with a high percentage of eosinophils in the peripheral blood but not in the CSF

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore