45 research outputs found

    Skeletal muscle satellite cells cultured in simulated microgravity

    Get PDF
    Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and therefore provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (approximately 200 gm) were used for all studies and were composed of greater than 75 % satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D flat culture and 3-D HARV culture. Plating efficiency (cells attached - cells plated x 100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and non-satellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability since glucose levels in media from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARVS were joined together by cells into three-dimensional aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of satellite cells on microcarrier beads within the HARV bioreactor results in a three dimensional level of organization that could provide a more suitable model to study postnatal muscle development

    The 2009 Samoa–Tonga great earthquake triggered doublet

    Get PDF
    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone

    Data system design for a hyperspectral imaging mission concept

    No full text
    Global ecosystem observations are important for Earth-system studies. The National Research Council's report entitled Earth Science and Applications from Space is currently guiding NASA's Earth science missions. It calls for a global land and coastal area mapping mission. The mission, scheduled to launch in the 2013-2016 timeframe, includes a hyperspectral imager and a multi-spectral thermal-infrared sensor. These instruments will enable scientists to characterize global species composition and monitor the response of ecosystems to disturbance events such as drought, flooding, and volcanic events. Due to the nature and resolution of the sensors, these two instruments produce approximately 645 GB of raw data each day, thus pushing the limits of conventional data handling and telecommunications capabilities. The implications of and solutions to the challenge of high downlink data volume were examined. Low risk and high science return were key design values. The advantages of onboard processing and advanced telecommunications methods were evaluated. This paper will present an end-to-end data handling system design that will handle the large data downlink volumes that are becoming increasingly prevalent as the complexity of Earth science increases. The designs presented here are the work of the authors and may differ from the current mission baseline.United States. National Aeronautics and Space Administratio
    corecore