1,866 research outputs found

    The Development of New Concepts for Assessing Reproductive Toxicity Applicable to Large Scale Toxicological Programmes

    Get PDF
    Large scale toxicological testing programmes which are currently ongoing such as the new European chemical legislation REACH require the development of new integrated testing strategies rather than applying traditional testing schemes to thousands of chemicals. The current practice of requiring in vivo testing for every possible adverse effect endanger the success of these programmes due (i) to limited testing facilities and sufficient capacity of scientific/technical knowledge for reproductive toxicity; (ii) an unacceptable number of laboratory animals involved (iii) an intolerable number of chemicals classified as false positive. A key aspect of the implementation of new testing strategies is the determination of prevalence of reproductive toxicity in the universe of industrial chemicals. Prevalences are relevant in order to be aware on the expected rate of false classification during the toxicological testing and to implement appropriate measures for their avoidance. Furthermore, a detailed understanding on the subendpoints affected by reproductive toxicants and the underlying mechanisms will lead to more science based testing strategies integrating alternative methods without compromising the protection of consumers

    Optical Response of Grating-Coupler-Induced Intersubband Resonances: The Role of Wood's Anomalies

    Full text link
    Grating-coupler-induced collective intersubband transitions in a quasi-two-dimensional electron system are investigated both experimentally and theoretically. Far-infrared transmission experiments are performed on samples containing a quasi-two-dimensional electron gas quantum-confined in a parabolic quantum well. For rectangular shaped grating couplers of different periods we observe a strong dependence of the transmission line shape and peak height on the period of the grating, i.e. on the wave vector transfer from the diffracted beams to the collective intersubband resonance. It is shown that the line shape transforms with increasing grating period from a Lorentzian into a strongly asymmetric line shape. Theoretically, we treat the problem by using the transfer-matrix method of local optics and apply the modal-expansion method to calculate the influence of the grating. The optically uniaxial quasi-two-dimensional electron gas is described in the long-wavelength limit of the random-phase approximation by a local dielectric tensor, which includes size quantization effects. Our theory reproduces excellently the experimental line shapes. The deformation of the transmission line shapes we explain by the occurrence of both types of Wood's anomalies.Comment: 28 pages, 7 figures. Physical Review B , in pres

    Hybridization of electron subbands in a double quantum well at quantizing magnetic field

    Full text link
    We employ magnetocapacitance and far-infrared spectroscopy techniques to study the spectrum of the double-layer electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. For gate-bias-controlled asymmetric electron density distributions in this soft two-subband system we observe both individual subband gaps and double layer gaps at integer filling factor ν\nu. The bilayer gaps are shown to be either trivial common for two subbands or caused by hybridization of electron subbands in magnetic field. We describe the observed hybrid gaps at ν=1\nu=1 and ν=2\nu=2 within a simple model for the modified bilayer spectrum.Comment: REVTeX, 24 pages, 9 figures included. Submitted to Phys. Rev.

    Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides

    Get PDF
    We study the coherent flow of interacting Bose-condensed atoms in mesoscopic waveguide geometries. Analytical and numerical methods, based on the mean-field description of the condensate, are developed to study both stationary as well as time-dependent propagation processes. We apply these methods to the propagation of a condensate through an atomic quantum dot in a waveguide, discuss the nonlinear transmission spectrum and show that resonant transport is generally suppressed due to an interaction-induced bistability phenomenon. Finally, we establish a link between the nonlinear features of the transmission spectrum and the self-consistent quasi-bound states of the quantum dot.Comment: 23 pages, 16 figure

    Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well

    Full text link
    We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. In this system unbalanced by gate depletion, at temperatures T\agt 30 mK we observe two sets of quantum oscillations: one originates from the upper electron subband in the closer-to-the-gate part of the well and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors ν=1\nu=1 and ν=2\nu=2, both the common gap presence down to the point of one- to two-subband transition and their non-trivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be published in JETP Let
    corecore