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ABSTRACT 
 
Large scale toxicological testing programmes which are currently ongoing such as the new European 
chemical legislation REACH require the development of new integrated testing strategies rather than 
applying traditional testing schemes to thousands of chemicals. The current practice of requiring in vivo 
testing for every possible adverse effect endanger the success of these programmes due (i) to limited 
testing facilities and sufficient capacity of scientific/technical knowledge for reproductive toxicity; (ii) an 
unacceptable number of laboratory animals involved (iii) an intolerable number of chemicals classified as 
false positive. 
 
A key aspect of the implementation of new testing strategies is the determination of prevalence of 
reproductive toxicity in the universe of industrial chemicals. Prevalences are relevant in order to be aware 
on the expected rate of false classification during the toxicological testing and to implement appropriate 
measures for their avoidance. Furthermore, a detailed understanding on the subendpoints affected by 
reproductive toxicants and the underlying mechanisms will lead to more science based testing strategies 
integrating alternative methods without compromising the protection of consumers. 
 
 
INTRODUCTION 
 
The relationship between chemical exposure and reproductive/developmental toxicity is highly complex, 
involving interactions between multiple organs and organ systems in both parents and offspring at a 
variety of different time points and life stages. The inherent complexity of the vertebrate reproductive 
system represents a significant challenge to the development of in vitro, in silico and “omic,” as well as 
other non-animal technologies aimed at reducing, and ultimately replacing, animal use in this area of 
toxicology [1]. This natural incorporation of emerging scientific opportunities has to be seen also in the 
context of the increasing need to review traditional approaches in toxicology, as attempted in the 
emerging evidence-based toxicology [2]. 
 



However, not only animal welfare considerations prompt the need to substitute traditional approaches by 
new testing strategies: Pronounced inter-species variances have been described showing not more than 
60% correlation between different laboratory mammalian species in the area of developmental toxicity [3, 
40]. There is no reason to assume that any species does predict humans better than e.g. mice predict rat 
developmental toxicity of a given chemical. The “precautionary” response of regulatory toxicology was to 
test in more than one laboratory animal species, in order to reduce the 40% missed potentially 
developmental toxic substances. However, inevitably this increases on the other side the already 40% 
false-positive classifications. Whether we can afford this substantial overlabelling especially in high-
production volume chemical evaluation programmes shall be discussed. 
 
There is also in various respects an economical dimension: reproductive toxicity testing was already 
identified as the driving factor of costs (and animal use) and also as the driving factor for the new 
European chemicals legislation REACH [4, 5]. This is due to the fact that tests like the two-generation 
study are among the most costly tests and at the same time requiring up to 3.200 animals (two generation 
study) per substance. In the light of the finalization of the legislation, a reassessment of these figures for 
reproductive toxicity appeared to be appropriate. 
 
Often overlooked, reproductive toxicity testing has not been developed for, nor been largely applied to, 
chemicals in general. It has predominantly been used for pharmaceuticals and pesticides. Although 
introduced for chemicals several decades ago, this held true only for new chemicals at a certain 
production volume. However, very few new chemicals are produced in volumes triggering such testing. 
Thus, experience of the predictive value and performance in general for ordinary chemicals is more than 
limited. So are also the laboratory capacities available to carry out testing. 
 
Testing requirements for reproductive toxicity in various regulatory sectors (e.g. pharmaceuticals, 
agrochemicals, industrial chemicals) should reflect current knowledge concerning the relative contribution 
of different substances to the overall prevalence of adverse reproductive outcomes. In this context, only 
about 2% of birth defects have been attributed to environmental chemicals as a causal factor [6]. 
 
A detailed understanding of target tissues and biological mechanisms of reproductive toxicants is 
necessary to effectively implement the use of alternative methods for highly complex endpoints for which 
a one-to-one replacement cannot be achieved. Despite the complexity, many regulations already request 
that the principles of the (3Rs) are respected [7] in order to ensure that the most recent toxicological 
methods are used to reduce the number of animals while not compromising the safety of consumers and 
patients (e.g. as in Europe’s new chemical legislation “REACH” requires in its Article 1 “…This Regulation 
should also promote the development of alternative methods for the assessment of hazards of 
substances…” or the draft of revision of Annex II and III to Council Directive 91/414/EEC for plant 
protection products is asking for “…study designs that have taken reduction, refinement and replacement 
of animal tests into consideration”). The seventh amendment to Directive 76/768/EEC on cosmetics from 
2003 foresees a complete marketing ban on cosmetics ingredients tested for reproductive toxicity on 
animals in 2013. These legislations require study designs that take reduction, refinement and 
replacement of animal tests into account when performing hazard assessment of substances. However, 
there is still a strong reluctance by regulatory authorities with regard to the use of validated in vitro tests in 
a context of testing strategies due to their limitations with regard to coverage of sub-endpoints and 
xenobiotic metabolism, but also due to a limited confidence in the reliability of formal validation studies. 
Integrated, “intelligent” testing strategies are necessary to make optimal use of the so called “partial 
replacement” methods. In the following, we would like to provide a short overview of the current status of 
reproductive toxicity testing, its drawbacks when applied to large scale toxicological programmes and to 



introduce new concepts that make use of a more scientific hazard assessment using new technologies 
and existing knowledge. 
 
CLASSICAL APPROACH TO REPRODUCTIVE TOXICITY ASSESSMENT 
 
Currently the treatment of one or more generations of rodents with a test chemical is the most common 
approach for identifying chemically induced adverse effects on reproduction. For evaluating 
developmental toxicity, test guidelines were designed to detect malformations in the developing offspring 
together with parameters such as growth alterations and prenatal mortality. 
 
A variant on these “definitive” studies are the shorter and less complex “screening” tests, which combine 
reproductive, developmental, and (optionally) repeated dose toxicity endpoints into a single study design. 
From the animal welfare point of view a combination of a repeated dose toxicity study with the 
reproduction/developmental toxicity screening test is preferable but this requires compromises due to the 
exceptional physiological status of pregnant animals which are eventually not providing unbiased 
toxicological information on the subacute (chronic) effects. 
 
These reduced protocols have mainly been employed in national and international programmes to gather 
screening-level data for chemicals [8, 9]. However, this study design has limited sensitivity and produces 
a high level of equivocal results which often have to be further evaluated in more “definite studies”, such 
as a prenatal developmental toxicity study and/or a two generation study. Due to the fact that the 
screening requires 560 animals per test [10], the application of this test as screening tool in its present 
form should be reconsidered for large toxicological programmes. An improvement of the test design in 
order to increase resolving power of the test and by reducing the number of equivocal results is desirable. 
 
The current concept of reproductive toxicology testing for regulatory purposes requires extensive hazard 
tests analysing every possible adverse effect followed by the elimination of information not relevant to 
regulatory decisions such as classification/labelling and risk assessment. Only in the rare event of 
sufficient existing information is no further testing requested. This classical approach has been applied in 
the past although only relatively few new chemicals have been evaluated for their hazards. 
 
A summary of tests currently used for regulatory decision making is given in (Table 1). However, large 
toxicological programmes such as REACH are now requiring a reorientation of the currently used testing 
paradigm. The success of REACH will be endangered if regulatory bodies continue to follow a 
conservative approach requiring in vivo testing for every possible adverse effect as it is proposed in the 
current draft technical guidance for industry of the REACH implementation programme at higher tonnage 
levels [26]. The traditional concept to cover all possible endpoints is shown in Fig. (1). This approach will 
lead to testing between 1.665 and 5.500 chemicals in e.g. two-generation studies [10], which is to achieve 
due to the limited testing facilities and a lack of sufficient scientific/technical know-how. A survey carried 
out including 28 major independent and corporate laboratories in Europe indicated that only 11 offer two-
generation studies with a capacity of 28 substances per year [27]. This total suggested a capacity to carry 
out about 50 parallel two-generation studies in Europe, each lasting about two years. Thus, every year 25 
new substances can be included. The majority of this testing capacity is employed for drugs and 
pesticides. Only about three general chemicals per year have been tested in two-generation studies since 
the introduction of the Dangerous Substance Directive in 1981 [27]. Thus, testing of hundreds or even 
thousands of chemicals in the context of REACH will overwhelm available test capacities. This calls for 
adequate priority setting to make best use of these limited resources as well as for the use of any other 
mean to satisfy the information requirement by means of an integrated testing strategy. 
 



In addition, the ethical dilemma of this conservative concept becomes clear by analyzing the impact on 
animal numbers for large toxicological programmes to fulfill the information requirements of REACH. 
Several impact assessments have addressed this problem; the most prominent ones are published by 
van der Jagt [5], Hoefer [10] and their colleagues. These figures have been recently reassessed [28] due 
to further knowledge derived from the REACH implementation projects. Unfortunately, currently only less 
than 5% of the toxicological dossiers of the US HPV program or in the new chemical data base of the 
European Chemicals Bureau (ECB) contain data for reproductive toxicity equivalent to the information 
level required for REACH (Fig. (2)). The most relevant tests accounting for REACH are TG 421 (560 
animals/test), TG 414 (150 animals and up to 1200 fetuses/species/test) and TG 416 (3200 animals/test). 
There are assumptions about the number of substances falling in each tonnage range, i.e. 5.000 for 1-10 
tons, 2.500 for 100-1000 tons and 2.700 above 1000 tons. If these all would require testing according to 
REACH, 5.7 (TG 421), 3 (TG 414) and 20.5 (TG 416) million animals would be needed. Assumptions as 
to available data and waiving opportunities, which cannot be detailed here, bring these 29.2 million 
animals down to 19.4 million. The possible impact of non-testing methods and alternative methods will 
depend on technical progress as well as the willingness to incorporate them in integrated testing 
strategies. Noteworthy, the consideration of a second species for the two-generation study, endocrine 
disrupter testing, as well as developmental neurotoxicity testing as a possible additional testing 
requirements have not even been taken into account in our calculation. 
 
 
Table 1. Overview on the Currently Used and Suggested Test Protocols 

 

Study Type Test Guideline(s) Ref. 

1-generation reproduction toxicity study EU Method B.34; OECD 415 [11,12] 

2-generation reproduction toxicity study EU Method B.35; OECD 416; OPPTS 870.3800 [11,13,14] 

Reproduction/developmental toxicity screening test OECD 421; OPPTS 870.3550 [15,16] 

Combined repeated dose toxicity study with the 
reproduction/ developmental toxicity screening test 

OECD 422; OPPTS 870.3650 [17,18] 

Segment I and III studies for detection of toxicity to 
reproduction of medicinal products and toxicity to 
male fertility 

ICH S5(R2) [19] 

Prenatal developmental toxicity (tetratogenicity) EU Method B.31; OECD 414; OPPTS 870.3700 [11,20,21] 

Segment II ICH S5(R2) [22] 

Developmental Neurotoxicity OECD 426 (draft); OPPTS 870.6300 [23,24] 

Mammalian level 5 test Proposal to the OECD [25] 

 
The presented guidelines or drafts are used to identify reproductive/developmental hazards. All protocols are based 
on animal experiments. 
 
 
 
 
 
 



 
 

 
 
Fig. (2). Summary of existing data from the US-EPA HPV database and the ECB database fulfilling the standard 
information requirements of REACH. 
 

 
 
The expense and animal use associated with reproductive toxicity testing appear even less reasonable 
when one considers that reproductive toxicity is most probably an event with a low frequency in the 
universe of industrial chemicals. An independent expert panel of industrial reproductive toxicologists has 
concluded that in all likelihood, less than 5% of industrial chemicals possess properties that could be 



harmful to the developing child. This assumption estimate is supported by a review of the ECB New 
Chemicals Database, which documents that over the past 25 years, 84 developmental toxicity studies of 
58 new chemicals have been performed according to OECD TG 414, leading to only 3 regulatory 
classifications of developmental toxicants. 
 
This is reflected in findings of various other studies that have analyzed the prevalence of birth defects. In 
3-6% of newborns, birth defects have been occurred due to various reasons such as chromosomal 
abnormalities, monogenetic disorders, maternal diseases, multi-factorial and spontaneous developmental 
disorders. Only 2% of birth defects can be associated with chemical and physical stress. This includes 
mainly the abuse of alcohol and other drugs [29-32]. With support of the EC DG Health and Consumer 
Protection (DG SANCO) Public Health Programme, the European network of population-based registries 
for the epidemiologic surveillance of congenital anomalies Interpretation of Prevalence Rates (Eurocat) is 
maintained in order e.g. to facilitate the early warning of new teratogenic exposures [33]. 
 
For the assessment of the prevalence of effects on mammalian fertility, the available database is even 
more limited. A query of the database for repeated dose toxicity [34] has analyzed for how many 
chemicals the LOEL has been established due to effects on reproductive target organs in chronic studies. 
Results are presented in Fig. (3). These data indicate that except for testes histopathology, effects on 
reproductive target organs rarely serve to establish the LOEL. It should be noted, that these are not 
distinguishing the route of application and the study duration; liver, kidney, and body weight are given as 
examples for often affected organs; forestomach for local toxicity. It needs to be stressed that the 
described effects do not automatically point to impaired mammalian reproduction, but only to observed 
histopathological effects. The prevalence of reproductive toxicity is most probably lower than this query is 
demonstrating. We have found by reviewing the New Chemical Database of the ECB that 15 two-
generation studies have led to only one R60 classification whereas 58 one-generation studies have led to 
3 classifications. 
 
Aside from the feasibility of fulfilling the current information requirements in large scale testing 
programmes, the uncertainty of the testing design itself has not been assessed. Most of animal-based 
test methods never underwent formal validation according to internationally agreed criteria [35-37]; a firm 
conclusion on the sensitivity and specificity of these tests and their relevance for predicting adverse 
effects to humans can thus not be made. The bitter lesson of thalidomide has pointed to the need for 
predictive tests. The disaster has made clear that results of developmental toxicity testing in one 
laboratory species cannot easily be translated to humans if the predictive capacity of a test is not defined. 
Several studies have shown that no single animal species is more predictive to human teratogens than 
another, and no species is more sensitive to teratogens in general [38-40]. Hurrt et al. [40] have 
demonstrated by analyzing 91 veterinary drugs that no single species (rat, rabbit, or mouse) was capable 
of detecting more than 61% of the teratogens. By using two species, the hazard of all drugs could be 
detected in the study of Hurrt. However, this study should be interpreted with caution since Schardein [31] 
has provided an extensive study in which several hundreds of chemicals have been assessed for their 
interspecies variations. In order to overcome the drawback of low sensitivity, regulatory bodies request 
testing in a second species. It should be stressed that the sensitivity of the test design requesting two 
species is still not known. But the consequence of requesting two species is dramatic: By assuming a 
prevalence of maximal 5% for developmental toxicity in the universe of industrial chemicals and by 
requesting additional testing in another species in case of a negative first study, the number of animals for 
developmental toxicity testing will be nearly doubled. In addition, a side effect of requesting a second 
species which is often overlooked in the current testing practice but which will have a high impact on large 
testing programmes is the increase in the rate of falsepositives, and therefore the unwanted restrictions of 
valuable substances. A simple calculation might illustrate the consequences of the traditional approach. 



We assume that a maximum of 5% of chemicals exhibit developmental toxicity in humans; this means 
that in 1000 chemicals we have to identify 50 toxic chemicals. Applying a first species (typically rat) which 
correlates by 60% with humans implies that we identify 30 of these 50. A second species (typically rabbit) 
applied to the 20 missed ones, will identify 12 correctly. This means that we still miss one in eight 
developmental toxicants. The major problem, however, becomes evident for the harmless substances in 
humans: 40% from 950 innocent substances will be labelled false-positively in rat, i.e. 380 chemicals. 
When testing in the second species, whose test results are assumed to be conditional independent from 
the results of the first species, the remaining 570 negative chemicals, another 40% (228) will be classified 
false-positively. Thus, in total this sums up to 608 false-positive classifications in order to identify 42, still 
missing 8 true ones. This classification will result either in restrictions of use, abandoning of substances, 
or costly follow-up studies to demonstrate that these findings do not translate to humans. The calculation 
is illustrated in Fig. (4). whether we can afford such sacrifice is a question beyond the remit of this article. 
Presenting this calculation on occasion of a number of scientific meetings resulted in very different 
reactions: While there was little concern about the underlying assumptions (maximum 5% real-positives 
and 60% interspecies correlation), practitioner’s reactions varied from agreement with regard to 
experienced classifications to a complete disbelief. Most probably, the correlation between species is 
indeed better, since the number used is based mainly on substances which are positive in one species 
and have been retested in other species, while the majority of substances should be negative in all 
species. However, the prevalence of developmental toxicants is most probably even lower (2-3%, as 
indicated from the analysis of various databases). Assuming 2,5% prevalence, even 70% inter-species 
correlation still results in 497 false-positives and 80% correlation still in 351 false-positives. Thus, even a 
drastically increased assumption with regard to inter-species correlation leaves us with an enormous 
fraction of false-positives in order to identify about 24 real positives. The positive predictive value, i.e. how 
sure can you be of a positive test result, is thus somewhere between 4 to 8%. 
 

 
Fig. (3). Contribution of different (reproductive) organs to establishing LOAEL in repeated dose toxicity tests in mice 
and rats (n=329 chemicals/rats; 203 chemicals/mice). 



 
Fig. (4). The presented scenario is based on two assumptions: (i) the prevalence of developmental toxicity in the 
universe of industrial chemicals is 5% and the correlation between species is 60% [38]. However, the current testing 
scheme will result under this assumption to a false-positive classification of more than 600 chemicals since clear 
positive results in the first species will lead to regulatory decisions. 

 
 
 
Other interspecies variations relevant to reproductive toxicity have not received much scientific attention 
due to a lack of prominent examples. However, there are several reports stressing the relevance of 
interspecies differences with regard to spermatogenesis [41] and placentation [42]. 
 
The aspect of intraspecies variations in humans has not been addressed in the current testing scheme at 
all. Individuals may inherit one or more genes that make it more likely to have a birth defect if the 
individual is exposed to certain environmental substances.  Environmental substances will only induce 
birth defects if there is a genetic predisposition. Examples of multi-factorial birth defects include cleft 
palate, neural tube defect, and heart defects [43]. 
 
In order to overcome the described problems of the current testing paradigm, several regulatory 
framework programmes are encouraging the use of more intelligent testing designs making use of new 
scientific and technological achievements such as state of the art in vitro methods. For example the 
REACH legislation includes a detailed annex outlining how information requirements can be adapted in 
order to reduce animal testing without compromising consumer safety. The US EPA's pesticide program 
is also calling for a more hypothesis-driven approach to toxicology testing. The US EPA has 
commissioned a National Research Council (NRC) committee to provide the Agency with specific 
feedback and advice on critical research activity and the science and public policy issues necessary to 
achieve the vision. The final NRC report has recently been published [44]. 
 



INTERMIN STRATEGY USING REDUCTION AND REFINEMENT METHODS FOR ASSESSING 
REPRODUCTIVE TOXICITY 
 
The (F1-Extended) One-Generation Study 
 
The Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and 
Environmental Sciences Institute (HESI) has developed a testing scheme for assessing toxicity to various 
mammalian life stages including preconception, embryo/foetal and newborn/preweaning life stages; 
adolescence and adults of all ages without compromising the provision of relevant toxicological 
information. The focal point of the life stages paradigm is the (F1-extended) one-generation study in 
which mature parental males are treated for four weeks and parental females for two weeks before 
mating. The treatment is continued during gestation and lactation until weaning of the F1 generation 
offspring in order: (i) to analyse effects on fertility, (ii) to determine the effects on developing organ 
systems during prenatal development, and (iii) to identify any effects of developmental 
(gestational/lactational) exposure on the offspring. Depending on alerts observed in the onegeneration 
study, the test design allows continuing treatment of the parental animals, and remating them to produce 
a second litter. In addition, any indication for developmental neurotoxicity or developmental 
immunotoxicity will lead to an extension of study by integrating appropriate tests for further assessment of 
these effects [25]. The practical feasibility of the protocol is currently evaluated within a collaborative 
industrial effort with ECVAM. It should be stressed that regulatory acceptance of the protocol leading to 
an OECD test guideline will require a formal validation exercise fulfilling criteria as laid down in the OECD 
guidance document 34. The validation of the proposed study design is certainly challenging due to its 
complexity. In particular, the involvement of triggers requires intensive discussion when assessing the 
relevance and reliability of the overall protocol. However, the effort is worthwhile since the protocol is 
aiming to replace the two-generation study and partially also developmental toxicity testing and has 
therefore a saving potential of up to 50% of animals needed for reproductive toxicity testing. 
 
LONG TERM AIM: INTEGRATED TESTING STRATEGIES BASED ON PREVALENCE OR ON 
ALERTS DERIVED FROM EXISTING KNOWLEDGE 
 
In order to facilitate the optimal use of alternative methods, the current paradigm that is requiring in vivo 
testing for every possible adverse outcome needs to be changed toward a hypothesis-driven strategy. 
Existing data on the chemical or the chemical group, in silico models and in vitro data, combined with 
considerations of relevance of exposure, should be used in a weight of evidence approach to waive 
animal intensive in vivo tests and should lead only in exceptional cases to confirmatory in vivo studies. 
This approach will focus on the most likely hazards of concern and determine, each chemical or chemical 
group and exposure scenario, what specific data are essential in order to make reliable regulatory 
decisions. The basis for assembling robust batteries of in silico and in vitro models will be based either on 
the prevalence of adverse effects (prevalence-driven strategy), or on a combination of ad-hoc testing 
batteries based on alerts derived from existing knowledge (alert driven strategy). 
 
ALERT DRIVEN STRATEGIES 
 
Key parameters of integrated testing strategies are alerts deriving from other toxicological studies, 
observations in human populations or from the knowledge on toxicological hazards related to the 
chemicals structure. It is highly important that existing, non-confidential or shared toxicological data are 
identified and allow a detailed analysis of existing toxicological information. There is a need for guidance 
on how information sources such as toxicological databases, data bases for human data as well 



information sources based on in vitro tests, QSARs, chemical categories and read-across approaches 
can be accessed and used. 
 
However, in case the data are insufficient for regulatory decisions but alerts have been identified, the 
existing data will be the basis for the development of a tailored testing scheme. Depending on the nature 
of the alerts, test batteries of specific validated in vitro tests will be triggered in order to confirm or refute 
observed concerns. For example a histopathology in testes observed in repeated dose studies will be 
followed up by tests on spermatotoxicity models not a two-generation study, if the classification cannot be 
done on the finding alone. This approach is seeking for a targeted testing that provides sufficient 
toxicological data for hazard identification but it also keeps in vivo testing to a minimum. It should be 
stressed that in vitro tests should only be used as decision points in a testing strategy if validated 
according to internationally agreed validation criteria ensuring their reliability and relevance. 
 
A frequent possible scenario for an alert driven strategy could be unclear histopathological observations 
in the testes in subacute or chronic toxicity studies. These findings should not automatically trigger 
additional animal intensive tests for reproductive toxicity; but these effects should be further explored by 
using in vitro testing batteries analyzing cytotoxic effects on specific cell population of the reproductive 
organs and/or by analyzing relevant hormone production or by monitoring gametogenesis in vitro. The 
obtained data will identify if observed changes in the tissues of reproductive organs are reprotoxic effects 
or if the observed effects are related to general toxicity. The establishment of relevant databases such as 
the one of the Fraunhofer society [34] will support the development of such a scientific approach. A query 
of the database containing 329 chemicals tested in repeated dose studies (rats) and 203 chemicals 
(mice) has demonstrated that major targets of chemicals showing toxicological effects on the testes are 
target cells that can also be cultured in vitro (Table 2). However, substantial research efforts are still 
necessary to maintain the functionality of target cells in vitro and to convert these in vitro models into 
predictive tests using specific functions as toxicological endpoints. Changes of the functionality of certain 
target cells will point to the relevant target mechanisms and will support the interpretation if the observed 
effects are relevant to humans. 
 
PREVALENCE DRIVEN STRATEGY 
 
The prevalence driven strategy will be based on the quantification of frequency of observed adverse 
effects on toxicological targets of reproductive toxicants tested in vivo. This strategy should be applied if 
no information of the chemical or chemical class is available. The aspect of prevalence is highly important 
when setting-up testing batteries for screening purposes in order to replace in vivo screening tests [45]. In 
order to set-up a reliable database on the prevalences of subendpoints detailed analyses of existing in 
vivo reproductive toxicity studies is required. First steps leading towards the development of reliable 
testing strategies have been performed. Candidate chemicals with a broad database have been identified 
and evaluated by assessing the following databases: 
 

1. Annex 1 of Directive 67/548/EEC. The most recent listing under Annex 1 of the EU Dangerous 
Substances Directive (dated 16 June 2005) was obtained from the website of the European 
Chemicals Bureau (ECB) and examined to identify all substances classified with the risk phrases 
R60 through R64.  

2. The Proposition 65 list. The most recent version of the US Proposition 65 list (dated 9 June 2006) 
was obtained from the website of the State of California Office of Environmental Health Hazard 
Assessment and was likewise queried to identify all substances and/or mixtures classified as 
“developmental” and “male/female” reproductive toxicants. All hazard assessment documents 



listed on the Proposition 65 website [46] were downloaded and reviewed individually, of which 
eight were found to contain relevant information for this analysis. 

3. The European Chemical Substances Information System and IUCLID Chemical Data Sheet 
Information System were searched using individual CAS numbers as well as common chemical 
names. IUCLID datasets were identified and downloaded for 74 substances, of which 23 (31%) 
contained data on reproductive and/or developmental toxicity endpoints (i) in English and (ii) of 
sufficient quality to satisfy the reliability criteria established a priori for this analysis [47]. 

4. The US National Toxicology Program (NTP) [48] database of reproductive and developmental 
toxicity study abstracts was searched by common chemical name, which identified 43 high quality 
study summaries, all of which were considered to be relevant and reliable for the purposes of this 
analysis. A subsequent review of publications by the NTP Center for the Evaluation of Risks to 
Human Reproduction identified an additional eight monographs for use in this analysis. 

5. The US EPA’s Integrated Risk Information System [49] database was searched by CAS number 
and common chemical, yielding results for 17 substances. Although the IRIS reporting format was 
found to be overly superficial in areas normally needed to establish the reliability of a study [47], 
the experience with US EPA hazard and risk assessment procedures and criteria for listing in the 
IRIS database is sufficiently rigorous to permit use of these data without acquiring and reviewing 
original references. 

6. Peer-reviewed open literature by analyzing studies conducted according to recognized test 
guidelines or which have at least examined a relatively broad range of reproductive or 
developmental parameters (US National Library of Medicine’s TOXNET-Developmental and 
Reproductive Toxicity [50]). 

 
Despite a number of exhaustive database and literature searches, data satisfying the inclusion criteria for 
this analysis could not be located in the public domain for more than half (53%) of the substances 
classified by regulators as being toxic to reproduction. Consequently, the following analysis is limited to 
data on 71 classified reproductive toxicants or approximately 47% of the original database. The 
frequencies with which statistically and biologically significant positive effects have been reported have 
been determined. These frequency counts are presented in Fig. (5), as counts of absolute frequency (i.e., 
the total number of times a positive effect was detected in a particular sub-endpoint, irrespective of the 
dose at which the effect was seen). The reported effects are mainly not isolated effects but they also 
appear in combinations. It is therefore highly relevant for a further analysis in particular for sub-endpoints 
occurring with a lower prevalence in order to determine if they are associated with a more frequently 
occurring effect. These would further diminish the relevance to test for a sub-endpoint with a lower 
prevalence such as e.g. parturition. Even if parturition is a sub-endpoint with a low prevalence of a health 
effect which has per se a low prevalence in the universe of industrial chemicals, the competent authorities 
are currently requesting to test for such an endpoint. 
 
For developmental toxicity the search strategy described above identified reliable data for 202 (69%) of 
the classified substances. Given the extensive range of histopathological, functional, clinical and other 
evaluations undertaken in the context of a developmental toxicity study, standardization is important not 
only in relation to the selection of study endpoints, but also in the terminology used to communicate study 
results. For the purposes of this analysis, studies were analyzed and catalogued in a manner consistent 
with the recommendations of Chahoud and colleagues [51] using sub-endpoint definitions proposed by 
MacKenzie and Hoar [52]. The frequency with which standardized sub-endpoints from guideline prenatal 
developmental toxicity and developmental toxicity studies were reported positive for the 202 substances 
in this database is presented in Fig. (6). 
 
 



 
Fig. (5). Frequency with which standardised sub-endpoints yielded statistically significant findings among 71 
substances classified as reproductive toxicants. 
 

 
Fig. (6). Frequency of standardised sub-endpoints yielding statistically significant findings for 202 substances 
classified as developmental toxicants. 



Table 2. Observed Effects on the Testis 

Observed Effect Observations Attributed to this Effect 
Other Effects Observed in Combination at 

*Probably* Other Doses 

aspermatogenesis   

atrophy 
seminiferous tubular atrophy; degeneration 
of germ cells in the epididymis or seminal 

duct 
degeneration 

cell enlargement giant cell formation  

cell proliferation Leydig's cell increase  

changes in organ 
structure 

reduction in size  

degeneration 

lesion of seminiferous epithelium/ -tubules; 
histopathological changes in Sertoli cells; 

atrophy; weight decreased; weight 
increased 

changes in organ structure (decreased size 
and abnormal morphology); 

spermatogenesis impaired (including 
aspermia) 

haemorrhage   

hypoplasia interstitial-cell hyperplasia atrophy 

infertile testes effect reversible  

mineralization   

necrosis seminiferous tubules  

oedema   

spermatogenesis 
impaired 

decreased percentage of mobile sperm; 
decreased sperm velocity; increase in % of 

abnormal sperms 
weight decreased 

tumour 
Leydig cell tumor; malign. mesothelioma; 

interstitial cell adenoma 

atrophy, mineralization of seminiferous tubules, 
mesotheloioma of scrotum, weight decreased, 

flaccid testes (not reversible) 

weight decreased absolute and/or relative wt. 
degeneration of seminiferous tubules, atrophy, 

vacuolization of Sertoli cells 

weight increased Relative and/or absolute wt.  

Description of observed toxicological effects if the LOEL has been established due to effects on the testis. 
 
 

DEVELOPMENT OF A TOOL-BOX FOR ANALYZING REPRODUCTIVE TOXICITY BY USING 
ALTERNATIVE 
METHODS 
 
ReProTect 
 
Within the 6th Framework Programme of the European Union a international Integrated Project 
(ReProTect, http://www.reprotect.eu/), involving 32 partners from industry, academia and governmental 
institutions, has been set up aiming to develop and optimize in vitro tests that are able to detect toxic 
effects and mechanisms associated with reproductive toxicity. Due to the complexity of the mammalian 
reproductive cycle, it is not possible to model the whole cycle in one in vitro system in order to detect  



Table 3. Summary of Currently Pursued Tests in the Optimization Process of Test Development 

In Vitro Model 

ECVAM Modular Approach 

Module 1 Module 2 Module 3 Module 4 

test definition 
within-

laboratory 
variability 

transferability 
between-
laboratory 
variability 

Explanation 
of 

mechanistic 
basis 

including 
the 

definition of 
predicted 
endpoints 

SOP 

Training 
set 
of 

chemicals 
 
 

Definition of 
prediction 
model and 
domain of 

applicability 

From 5-30 
chemicals 
with well 
known 
defined 

reproductive 
mechanisms 
have been 

tested 

Ease of 
transferability 

Assessment 
of 

reproducibility 
of 

experimental 
data in second 

laboratory 

Assessment of 
reproducibility 

of experimental 
data 

in 2-4 
laboratories 

(done by 
participants not 

by an 
independent 
statistician) 

Methods for assessing mammalian fertility 

CASA Y Y Y O Y Y Y Y 

SCSA/Comet assay Y O O O N X X X 

Leydig cells and 
steroidogenesis 

Y Y Y O Y X X X 

Sertoli cells Y Y Y Y Y Y Y O 

In vitro bovine oocyte 
(assessing effects on: 

oocyte maturation, 
fertilisation and 

pre-implantation embryo 

Y Y Y Y Y X X X 

Methods for assessing teratogenicity 

Embryonic stem cells 
(skeletal differentiation) 

Y Y O N N N N N 

Embryonic stem cells 
(neuronal differentiation) 

Y Y Y O O N N N 

Human embryonic stem 
cells test 

Y Y N O N X X X 

Methods for assessing endocrine modulation 

Transcriptional tests for 
assessing estrogenic and 

androgenic activity of 
substances 

Y Y Y O O Y Y O 

Receptor binding tests for 
estrogenic and androgenic 

compounds 
Y Y Y O O Y Y O 

Y= already achieved within ReProTect N= not yet achieved O= ongoing activity.  



adverse effects to mammalian reproduction. Individual tests should be used as building blocks to 
compose testing batteries and strategies. Within the last two years the Integrated Project ReProTect 
explored the predictive power of a range of pioneering in vitro tests, addressing to mimic key events of 
adverse effects with a high prevalence. 
 
In order to speed up the process of validation of in vitro tests and to safeguard the consistency with 
internationally agreed validation criteria, the test development is following the requirements laid down in 
the modular approach to the ECVAM principles on test validity [36]. It is envisaged that each test will 
provide information on the mechanistic basis, a standard operation procedure and an assessment of the 
intralaboratory reproducibility of the test. A training set of chemicals will be used to define a preliminary 
prediction model. The respective data will be compiled in toxicological dossiers, which will be peer-
reviewed before further formal validation steps can be initiated. More than 150 independently selected 
reproductive toxicants with different toxicological mechanisms have been selected in order to support the 
optimization process of test protocol development. 
 
Adverse effects on mammalian fertility are assessed in tests reflecting various toxicological mechanisms 
such as effects on Leydig/Sertoli cells, folliculogenesis, germ cell maturation, the motility of sperm cells, 
steroidogenesis, fertilisation and on the preimplantation embryo. Another key aspect of ReProTect is the 
detection of teratogenic compounds. Emphasis is laid on potential of human and murine embryonic stem 
cells to differentiate into major target tissues of teratogens such as neural and cardiac cells as well as on 
cells contributing to the skeletal system. The identification of stable toxicological endpoints is a major aim 
of the project. Due to the high relevance of inter-species variations selected compounds will be compared 
in the murine and the human embryonic stem cell test. Other tests assessing (anti)-estrogenic and (anti)- 
androgenic activity of compounds have been optimised and are now being analysed for their predictive 
capacity and will so contribute to testing strategies relevant for fertility and developmental toxicity. In 
addition, a protocol for evaluating the ability of chemicals to bind to the estrogen receptor will now be 
validated under the umbrella of the respective OECD (Organization for Economic Co-operation and 
Development) validation management group. A summary on the current status of the tests is given in 
(Table 3) and will be regularly updated. 
 
IN SILICO MODELS 
 
The development of reliable QSARs for reproductive toxicity is currently suffering due to a lack of high 
quality in vivo data and of the complexity of the reproductive toxicity endpoint involving several known and 
unknown toxicological mechanisms. It should be stressed that QSARs can be based either on in vivo or 
on in vitro data. The uncertainty of the origin of data should be taken into account when integrating these 
models into testing strategies. For example several QSARs that claim to predict developmental toxicity of 
various chemical classes are based on Xenopus embryos [53-55] or on Hydra Attenuata [56-58]. The 
relevance of these species for predictive human health effects needs to be carefully considered since e.g. 
Hydra attenuata is a micro-invertebrate and does not contain a third germ layer. Chemical effects on 
mesoderm formation and mesodermal cell differentiation can thus per se not be detected. The predictive 
capacity of Xenopus and other nonmammalian species for assessing adverse effects on human 
development in large scale programmes is scientifically still under discussion. Other QSARs are based on 
in vitro tests such as the whole embryo culture or primary cell cultures. The datasets of these models 
needs to be carefully reviewed as to their validation status before relying on predictions of the in silico 
models. The same holds true for the more promising area of QSARs estimating the receptor binding 
activity of estrogenic compounds [59-81]. However, the reliability of data derived from non-validated in 
vitro models feeding into the development of QSARs should be considered. Currently no in vitro model 
based on receptor binding studies has been validated according to internationally agreed criteria. 



Nevertheless several in vitro models are currently undergoing validation exercises in order to proof their 
reliability and relevance for the given purpose. Since several reproductive toxicants are acting via various 
receptors the area of receptor mediated toxicity seems currently to be the most promising area for a 
successful application of QSARs if data of validated in vitro models are available. 
 
Some commercially available toxicity prediction software packages are claiming to detect reproductive 
toxicants. Maslankiewicz et al. [82] have reported that the software program DEREKfW has been 
challenged with the around 100 reproductive toxicants included in Annex I of Directive 67/548/EEC. 90% 
of chemicals classified for “impaired fertility” and 81% of chemicals that cause harm to the unborn child 
were not detected. The TSCA chemical category list of the new chemical program of the US-EPA failed in 
77% to detect EU classified chemicals causing adverse effects to mammalian fertility and 82% of 
developmental toxicants have not been correctly identified. 
 
CONCLUSIONS 
 
The concept currently proposed by competent authorities for testing for every possible adverse effect of 
reproductive toxicants needs revision if large scale toxicological programmes should be feasible and 
successful. This precautionary approach will otherwise result in an enormous number of false-positive 
classifications. It is more advisable to develop new concepts based on the knowledge of already existing 
data of reproductive toxicants rather than requesting more testing following the traditional scheme. A 
major component of more science based concepts is a careful determination of prevalences with the 
support of high quality databases. Testing for the detection of adverse effects with low prevalences will 
lead to unnecessary animal testing but also to a high rate of false-positives. 
 
In addition, it is necessary to increase the confidence of decision making bodies into the validation 
process of alternative methods. Positive results of a properly validated alternative test with a high 
specificity are pointing to serious hazard of the observed toxicological pathway. The added value of 
confirmatory in vivo studies should be carefully considered before just overruling a positive in vitro result 
since the observed toxicological effect can be invisible in vivo due to species differences e.g. ADME 
effects of the used laboratory animal. This does not necessarily mean that the hazard is not relevant to 
humans especially in different exposure scenarios. In order to support this statement the prominent 
example of thalidomide should be stressed again. Differentiating stem cells showed a positive signal in 
vitro when treated with thalidomide [83] in contrast to the standard rodent study which has provided an 
equivocal result that has been wrongly interpreted. 
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ABBREVIATIONS 
 
ACSA   =  The Agricultural Chemical Safety Assessment 

CASA   =  Computer assisted Sperm Analysis 

DEREKfW  =  Deductive Estimation of Risk from Existing Knowledge for Windows 

ECB   =  European Chemical Bureau 

IRIS   =  Integrated Risk Information System 

IUCLID   =  International Uniform Chemical Information Database 

LOAEL   =  Lowest Observed Adverse Effect Level 

NAS   =  National Academy of Sciences 

NTP   =  National Toxicology Program 

OECD   =  Organization for Economic Co-operation and Development 

QSARs  =  Quantitative Structure-Activity Relationships 

REACH  =  Registration, Evaluation and Authorization of Chemicals 

SCSA   =  Sperm Chromatin Structure Assay 

TSCA   =  Toxic Substance Control Act 

US EPA  =  US Environmental Protection Agency 
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