68 research outputs found

    Dynamics of K+K^+ Production in Heavy Ion Collisions close to Threshold

    Full text link
    In this article the production of K+K^+ at energies close to the threshold is studied in detail. The production mechanisms, the influence of in-medium effects, cross sections, the nuclear equation of state and the dynamics of the nucleons on the kaon dynamics are discussed. A special regard will be taken on the collision of Au+Au at 1.5 GeV, a reaction that has recently been analyzed in detail by experiments performed by the KaoS and FOPI collaborations at the SIS accelerator at GSI.Comment: extract from habilitation at Nantes university (France), 76 pages, 76 figures, ps-file about 6M

    Landau-Vlasov model versus Vlasov-Uehling-Uhlenbeck-approach : different flow effects from the same theory?

    Get PDF
    Differences between the Nantes-Ganil-Grenoble (NGG) LV-model and the original VUU approach are analysed. It is found that the LV code tends to simulate - for small timesteps - a non-viscous testparticle fluid

    Transition from binary processes to multifragmentation in quantum molecular dynamics for intermediate-energy heavy ion collisions

    Get PDF
    We study the transition from fusion-fission phenomena at about 20 MeV/nucleon multifragmentation at 100–200 MeV/nucleon in the reaction 16O+80Br employing the quantum molecular dynamics model. The time evolution of the density and mass distribution, the charged-particle multiplicity, and spectra as well as angular distributions of light particles are investigated. The results exhibit the transition of the disassembly mechanism, but no sharp change is found. The results are in good agreement with recently measured 4-Pi data

    Out-of-plane pion emission in relativistic heavy ion collisions: Spectroscopy of Delta resonance matter

    Get PDF
    Azimuthal correlations of pions are studied with the quantum molecular dynamics model. Pions are preferentially emitted perpendicular to the reaction plane. Our analysis shows that this anisotropy is dominated by pion absorption on the spectator matter in the reaction plane. Pions emitted perpendicular to the reaction plane undergo less rescattering than those emitted in the reaction plane and might therefore be more sensitive to the early hot and dense reaction phase

    Azimuthal correlations of pions in relativistic heavy ion collisions at 1 GeV/nucl.

    Get PDF
    Triple differential cross sections of pions in heavy ion collisions at 1 GeV/nucl. are studied with the IQMD model. After discussing general properties of resonance and pion production we focus on azimuthal correlations: At projectile- and target-rapidities we observe an anticorrelation in the in-plane transverse momentum between pions and protons. At c.m.-rapidity, however, we find that high pt pions are being preferentially emitted perpendicular to the event-plane. We investigate the causes of those correlations and their sensitivity on the density and momentum dependence of the real and imaginary part of the nucleon and pion optical potential

    Production of hypertritons in heavy ion collisions around the threshold of strangeness production

    Full text link
    We use the Isospin Quantum Molecular Dynamics approach supplemented with a phase space coalescence to study the properties of the production of hypertritons. We see strong influences of the hyperon rescattering on the yields. The hypertritons show up to be quite aligned to the properties of nuclear matter underlining the necessity of rescattering to transport the hyperons to the spectator matter.Comment: 8 pages, proceedings of 14th International Conference on Nuclear Reaction Mechanisms, Varenna (Italy), 201

    Kaon production at subthreshold and threshold energies

    Get PDF
    We summarize what we have learnt about the kaon production in nucleus-nucleus collisions in the last decade. We will address three questions: a) Is the K+K^+ production sensitive to the nuclear equation of state? b) How can it happen that at the same excess energy the same number of K+K^+ and K−K^- are produced in heavy ion collisions although the elementary cross section in pp collisions differs by orders of magnitudes? and c) Why kaons don't flow?Comment: 5 pages, 4 figures, contribution to Strange Quark Matter 200

    The role of quantum effects and nonequilibrium transport coefficients for relativistic heavy ion collisions

    Get PDF
    Stopping power and thermalization in relativistic heavy ion collisions is investigated employing the quantum molecular dynamics approach. For heavy systems stopping of the incoming nuclei is predicted, independent of the energy. The influence of the quantum effects and their increasing importance at low energies, is demonstrated by inspection of the mean free path of the nucleons and the n-n collision number. Classical models, which neglect these effects, overestimate the stopping and the thermalization as well as the collective flow and squeeze out. The sensitivity of the transverse and longitudinal momentum transfer to the in-medium cross section and to the pressure is investigated

    Nuclear transport models can reproduce charged-particle-inclusive measurements but are not strongly constrained by them

    Get PDF
    Nuclear transport models are important tools for interpretation of many heavy-ion experiments and are essential in efforts to probe the nuclear equation of state. In order to fulfill these roles, the model predictions should at least agree with observed single-particle-inclusive momentum spectra; however, this agreement has recently been questioned. The present work compares the Vlasov-Uehling-Uhlenbeck model to data for mass-symmetric systems ranging from 12C+12C to 139La+139La, and we find good agreement within experimental uncertainties at 0.4A and 0.8A GeV. For currently available data, these uncertainties are too large to permit effective nucleon-nucleon scattering cross sections in the nuclear medium to be extracted at a useful level of precision

    Modelling the many-body dynamics of heavy ion collisions

    Get PDF
    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). This model allows to study the influence of several types of nucleonic interactions on a large variety of observables and phenomena occur- ring in heavy ion collisions at relativistic energies. It is shown that the same predictions can be obtained with several numerically completely di erent and independently written programs as far as the same model parameters are employed and the same basic approximations are made. Many observ- ables are robust against variations of the details of the model assumptions used. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which di ers among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given
    • …
    corecore