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Abstract. Stopping power and thermalization in relativistic heavy ion collisions is investi-
gated employing the quantum molecular dynamics approach. For heavy sysiems stopping
of the incoming nuclei is predicled, independent of the energy. The influence of the
quantum effects and their increasing importance at low energies, is demonstrated by
inspection of the mean free path of the nucleons and the n—n collision number. Classical
models, which neglect these effects. overestimate the stopping and the thermalization
as well as the collective flow and squeeze out. The sensitivity of the transverse and
longitudinal momentum transfer to the in-medium cross section and to the pressure is
investigated.

The usefulness of ithermodynamic concepts, ¢.g. density, temperature and pressure, is
discussed. Local equilibration can be defined only in a fluid picture. It is proven that the
projectile and target nuclei do not penetrate into each other, as assumed in the two-fluid
model. They both collide instead with a ‘participant’ component, which consists of those
nucleons which have suffered at least one collision. Local equilibration can reach up to
aboul 80% in each separated fluid.

[t is shown that the siress tensor in a one-fluid model cannot be cast in the Newtonian
form due to the non-isotropic structure dictated by the initial conditions in relativistic
h ....................... Almm ! e tan
coeflicients have nearly the same magnitude. Thus, both one- and wo-fluid viscous hydro-
dynamic models are not justified microscopically. The three-fluid model and anisotropic
hydrodynamics are currently the only macroscopic models which are supported by the
microscopic theory.

1. Motivation

One of the central motivations for studying heavy ion collisions at high energies
is the unique opportunity to probe, in the laboratory, hot dense nuclear matter,
e.g. the nuclear viscosity and the equation of state. Unfortunately, compression
prevails in nuclear collisions only for a very short period and the nucleons continue
to interact while the system decompresses. Signatures from the compression stage
can be distorted by these final-state interactions. Theoretical studies are needed to
find observables linked unambiguously to the densest and most excited state, and
are useful for measuring the thermodynamical properties of the system. Furthermore
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the concept of the equation of state is based on local equilibrium. It is therefore
an important question as to what degree the hot and compressed nuclear matter
thermalizes. This question is most important if one wants to use hydrodynamic
concepts 10 describe the dynamics of heavy ion reactions.

Hydrodynamic calculations revealed that the collective transverse flow probes
both the viscosity and the compression energy built up in the collision [1-18]. The
transverse flow has been experimentally discovered by the GSI/LBL plastic ball and
streamer champer groups [19-29). It arises as a consequence of the build-up of pres-
sure, which causes the release of the compression energy when the system expands.
However, the viscosity strongly damps the collective flow. The high temperature
achieved in such reactions, as well as the non-equilibrium and momentum-dependent
effects due to the highly anisotropic momentum distribution, diminish the sensitivity
of the flow observables to the static part of the nuclear potential.

Now the question arises as to how the system evolves from this highly anisotropic
initial stage into the final stage. In order to describe the time evolution of such
non-equilibrium processes several distinct microscopic models have been developed,
The most common ones are the one-body models of the Viasov—Uehling—Uhlenbeck
{(vuu)type [30-39] and the molecular dynamic models, which treat the many-body
correlations in a purely classical way [40-49]. This latter type of model has been
developed further by the inclusion of the most important quantum effects {50-58]
and has been widely used to describe the fragmentation process in nuclear collisions.

In-medium effects like the possible reduction of the nucleon-nucleon scattering
cross section {39-61] and the momentum dependence of the nucleon-nucleon interac-
tions (MDI1} [62] have an influence on the dynamics. Neither the density dependence
of the MDI, nor the correction of the cross section in dense and excited nuclear matter
are known and therefore it is certainly necessary to investigate how far the results
of theoretical calculations are influenced by both effects. The interplay between the
in-medium effects and the equation of state (E0S) on nuclear stopping is also studied
in this article.

MDI were first implemented in heavy ion collisions in early studies of molecular
dynamics [40, 42, 44] as well as in the multiple scattering model [63] and the time-
dependent meson field approach [65]. These models predict a significant influence for
non-local interactions on the observables: the inclusion of MDI leads to an increase
in the collective transverse flow as compared to a local potential alone.

The effective scattering cross section, on the other hand, determines the number
of n—n collisions in which the incident kinctic energy is thermalized. The sensitivity
of the longitudinal flow to Pauli corrections of the cross sections has recently been
demonstrated in VUU [33, 67] as well as in QMD [51, 52] calculations.

These models have successfully described heavy ion reactions on the one-particle
level. However, to compare these with experimental data, the fragmentation process
must also be described correctly. It has been shown experimentally [25-29] that
multi-fragmentation plays a dominant role in this energy regime. The QMD model can
indeed describe the dynamics of multi-fragmentation in this energy regime quite well
[51-53]. Recently some attempts have been made to incorporate the fragmentation
process in the VUU-type models [67-68].

One of the most important problems in such semiclassical microscopic models
is the missing antisymmetrization. The Fermi motion has up until now been incor-
porated by hand into these models (see, however, [69]). Therefore, the fragments
produced have some unrealistic properties. In particular, in the true ground state
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the nucleons would have vanishing momenta. In 1977 Wilets et al [41] had already
proposed that this problem could be remedied by simulating the Fermi motion of
the nucleons by a quasiclassical momentum-dependent Pauli potential (see also [57,
70]). The inclusion of a Pauli potential strongly influences the EOS at subsaturation
densities [71]. It appears necessary to include this effect in the dynamical models
[56-58, 71].

Non-equilibrium effects can be taken into account in nuclear fluid dynamics (NFD)
by means of the viscosity and heat conduction terms, if one assumes that the deviations
from local equilibrium are small. Elementary kinetic theory [72-74] connects the
viscosity coefficient r7 and the effective scattering cross section o°7 via the relation
n « 1/o%%, hence the size of n directly influences the amount of nuclear stopping.
It has been shown [76] that the nuclear viscosity strongly decreases the transverse
flow by a factor of roughly two if % is increased from zero (ideal fluid) to n =
60 MeV fm=? ¢,

In viscous hydrodynamics a viscosity coefficient of this size is needed in order to
match the calculated transverse flow with the data. Values of this order of magnitude
have been derived for hot, infinite nuclear matter from the classical kinetic theory
[72] and in the Uhlenbeck-Uehling equation [73] and have also been obtained by
means of fluid dynamic scaling analysis [63, 64].

2. The QMD model

The QMD approach, which is described in detail in [51-53], incorporates the important
quantum features of the vuu theory [30-39], namely the Pauli principle, stochastic
scattering and particle production, into the /V-body phase space dynamics of the
classical molecular dynamics method [40-48].

The nucleons are represented by Gaussians of the form

filr.pot) = ﬁm {_(’"_—’)‘E(A _ (p_pm(t))z%} "

where r,, and p,, are the centroids of particle ¢ in coordinate and momentum space.
The phase space distribution can now be expressed as

N
flrp ) =) fi(r,p1). @)
—
In terms of these Gaussians the baryon density is given by
N ) N
ga(r, i) = Z/f,-("',Pai) d*p = m EGXP[—(T' - 7'50)?/2[1]- 3
i=] - izl

With the knowledge of the phase space distribution it is possible to calculate
thermodynamical quantities locally. The ensemble average of a macroscopic quantity
x(r,t) is given by

{x(r,t)) = ‘/(l'(‘p {p.r. o f(pr, t). Q)]

1
plr. 1)
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The interactions used here are a local Skyrme two- and three-particle interaction,
a Coulomb and a Yukawa interaction. In some cases we also include a MDI which

has been adapted from the experimental values of the real part of the proton-nucieus
optical potential.

With those Gaussian nucleons, our interactions lead to the following Hamiltonian:

N
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The evaluation of the integrals yiclds
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N
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The primes on the sums indicate that the self-interaction terms arc omitted. The
three-bady part of the Skyrme interaction is here approximated to be proportional to
o, in order to allow the compressibility of nuclear matter to be varied as well.

The parameters «, 3 and v are adjusted to reproduce the properties of infinite
nuclear matter, ie.

% = —16 MeV
e=go

LOE/A s
P = p* = A\

s, EP 0 MeV fm €))

2=Lo
i — 0,20 E/A 3 {200 MeV  (soft EOS)
* T8y 380 MeV (hard EOS).

0= 0o
&=2&s

The parameters of the model are listed in table 1.

Table 1. Parameters of tive modei for the diiferent interactions.

K (MeV) EOs o (MeV) B (MeV) v 6 (MeV) e (Mev™2) VL . (MeV) -~y (fm)

380 H —124 70.5 20 — — —10 1.5
200 ) —356 303 76 — — —10 1.5
200 SM -390 320 &1 157 21.54 ~10 15

The short-range imteraction is taken into account in the same way as in the
cascade and VUU models via a stochastic scattering term: two nucleons can scatter if
the spatial distance of the centroids of their Gaussians is smaller than /o, /7. The
energy and angular dependence of the experimental differential n—n cross sections
do /dQ are reproduced. The free n—n cross sections are modified in a medium by
the Uehling-Uhlenbeck blocking factors [t — f(r,p)] [76], which determine the Pauli
blocking probability of the final states in an n-n collision. [nelastic processes have
also been implemented [30, 55].

3. The importance of the collision term

Before we investigate the influence of the quantum cffects on the reaction dynamics
we start with a survey of the time evolution for the reaction Au (b = 0 fm) + Au
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Figure 1. Time evolution of the density contours of Figure 2. As in figure | for the reaction 97 Au
the system %7 Au (200 MeV/nucleon, b = 0 fm) + (800 MeV/nucleon, b = 0 fm) + %7 Au. At this
197 Au for target and projectile nucleons which have  energy there is no interpenetration of projectile and
not yet collided (left) and for the ‘participant’ com- target.

ponent (right), which includes all particles which

have collided at least once. The contour lines are

at ¢ = 0.25,0.5,0.75,1.0,1.25,1.5,1.75, 2 g¢.

Note that the spectator fluid barely interpenetrates,

but instead collides wilh the participant nucleons

piled up in an ellipsoid at midrapidity.

at 200 and 800 MeV/nucleon bombarding energy. In the following we will define all
nucleons which suffered at least one collision as participants.

Figures 1 and 2 show the density profiles of the (cold) projectile and target
component in the left-hand column, ie. all particles that did not collide up to this
time. The right-hand column shows the corresponding profiles of the participant
component.

It is only at the very beginning of the reaction that there is an overlap between
the projectile and target component. The very first collisions (cf figure 8) rapidly
build up the participant components. Once these participant components have been
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formed, they act as a buffer between target and projectile—they no longer interact
directly. The future evolution of the system is completely determined by the sepa-
rate interaction of the participant matter with the projectile or target, respectively.
Interactions within the participant matter are also crucial. This behaviour is in com-
plete contradiction to the two-fluid model [4, 13, 14, 16, 17], where one assumes
that the projectile and target component stream through each other and collectively
decelerate.

E = 200 MeV E = 80O MeY
W00T 4« o fmre T107t= o fme i
5
500 [ it ]
5
1} 4
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Figure 3. Rapidity distribution d NV /d Y of the participants (biack area) and the spectators
(white area) at different reaction times as indicated in central collisions of 7 Au (200
{left), B0 (righty MeV/nucleon, b = 0 fm) + '*7 Au. Note that the participants can be
distinguished experimentally from the speciators by their rapidities.

The same fact can be observed in momentum space: The d N/dY distribution of
the three components is depicted in figure 3. Remnants of the projectile and target
do not survive the reaction for b = 0 fm. The matter is stopped at the centre of
mass rapidity. This supports the three-fluid picture [9, 15].

3.1. The influence of the quantum effecis

The influence of the quantum effects can be studied here¢ by comparing the calcu-
Jations using the free n-n cross section o™ (without Pauli blocking) to the results
including the Uehling-Uhlenbeck scattering cross section [76].

o = o™ (py,py, p1 PO L = flr,p)I = f(r,Ph)]. (8
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oYV takes into account the Pauli blocking of the final states of two scattered nucleons.
The Pauli blocking factors [1 — f(r,p)] effectively cause a reduction in the free cross
section in the medium. This in turn results in a decrease in the number of collisions.

3.2, The mean free path

The influence of this quantum effect on the dynamics of the reaction can most clearly
be seen by inspection of the mean free path of the nucleons. The time evolution of all
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Figure 4. Distribution of the free paths of the
nucleons for the reaction 137 Au (200 MeV/nucleon,
b= 3 fm) + 7 Au. A large number of nucleons
travel only 1-2 fm/c between two collisions. This
raises doubts as 1o whether the dilute gas limit is
justined.

Figure 5. The mean {ree path of the nucleons is
shown for the very central Au + Au collisions at en-
ergies from 200 to 800 MeV/nucieon (L} b == 0 fm
for the different n—n cross sections, masses and en-
ergics as indicated. Note that A does not depend
on the mass of the sysiem and decreases with in-
creasing bombarding energy in contrast 1o the naive
expectation of ciassical kinetic Lheories [74].

In figure 4 the distribution of the ‘free path’ A, of the nucleons between subse-
quent collisions is depicted. One observes a large number of nucleons which travel

Eas

only 1 or 2 fm ¢~! between two collisions. There is a small number of nucleons with
Ay, > 10 Mm ¢!, This raises doubts as to whether the dilute gas limit, which is the
main assumption of all transport models, and the neglect of three-body collisions is
justified.
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Figure 5 (top) shows the dependence of the mean free path on the mass of the
system for central, symmetric reactions. Note that the mean free path X is defined as
the average of the distribution of figure 4, taken over all collisions. The results are
shown for the Uehling-Uhlenbeck cross section oV and for a reduced cross section
o, Here an overall reduction of 30%, as proposed by Malfliet, Batemans and ter
Haar {59, 60], has been used in order to take the Pauli blocking of the intermediate
scattering states into account. This reduction of the cross section clearly reduces the
number of collisions and therefore increases A. Note that A depends on the n-—n
cross section and not on the mass of the system. The energy dependence of A can
be studied for the most central collisions of Au on Au in figure 5 (bottom).

A decreases with increasing bombarding energy, due to the higher densities
achieved, in spite of a decreasing n—n cross section. The results cbtained with the
Boltzmann cross section o™ ( without Pauli blocking) is also shown. This increased
cross section yields a drastic decrease of the mean free path. Enhanced thermalization

and nuclear stopping results. Au 1200 MeV/nucl, b=3 fm) + Ay
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Figure 6. Time dependence of the ratio of Pauli
blocked collisions to the total number of atiempted
collisions at different beam energies for the sys-
tem ®3Nb (b = 3 fm) + ®3Nb, soft Eos. Observe
that Pauli blocking is crucial even for the highest

N o/ Nuc,

Figure 7. The distribution of the number
of collisions is shown for the reaction '97 Ay
(200 MeV/nucleon, b = 3 fm) + 57 Au for the
soft EOs with and without Pauli blocking of the
final scattering states.

bombarding energies.

In order to demonstrate the importance of the Pauli blocking, the fraction of
the Pauli blocked collisions to all attempted collisions is shown in figurc 6 for the
system Nb + Nb for different beam energies between 50 and 1050 MeV/nucleon The
ratio is plotted against ¢3. Here ¢/ is the scaled reaction time, i.e. ¢ multiplied with
the velocity 3 of the incoming projectile in the equal speed system. “This product
corresponds to the distance travelled by the projectile and target in the z-direction.
It scales the time according to the velocity of the incoming projectile.

All curves start with a blocking fraction of one. This is due to the fact that all
collisions are Pauli blocked in the ground state. After the two nuclei touch each
other the blocking factors decrease and saturate after (3 =~ 5-6 fm. This distance
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corresponds to the total overlap of bath nuclei. For very low bombarding energies
(the TDHF regime) the blocking factor remains close to one, whereas for higher
energies it decreases down to 0.2 at 1 GeV/nucleon.

‘The distribution of the number of n-n collisions is shown in figure 7 for the
reaction Au (200 MeV/nucleon, b = 3 fm) + Au. This distribution is peaked at
about five collisions per nucleon for the soft Eos. The tail, however, shows particles
with more than 10-15 collisions. A considerable number of particles have suffered
no collisions at all and can therefore be called true spectators. They reside in the
nuclear coronas (pole-caps) in these off-centre collisions.

The importance of the quantum effects for the number of collisions is studied in
figure 7 (bottom): Without the Pauli blocking the number of collisions doubles and
the number of spectators decreases to zero.

Therefore classical molecular dynamic models [40-49], which neglect this quantum
effect, overestimate drastically the importance of the n-n collisions, especially at low
energies.
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Figure 8. Time dependence of the energy distributions d N /d\/s of the n-n collisions in
the reactions *°7 Au (200 and 800 MeV/nucleon, b = 3 fm) + 7 Au. The beginning of
the reaction is clearly governed by hard collisions, while sofl collisions dominate further
on.

Figure 8 shows the CM energy distributions d ¥/d /s of the nn collisions, again
for the reactions Au (200, 800 MeV/nucleon, b = 3 fm) + Au. The lower row give
the total, time integrated, distributions. A peak in the energy distribution is due
to the first collisions, which occur roughly at the cnergy /s = 2m + EX". This
underlines the importance of the non-equilibrium effects at the early times.

The time evolution of the scattering process shows that, while the dynamics in the
beginning of the reaction is dominated by high energy collisions, the soft collisions
dominate subsequently. Therefore, processes which are most sensitive to the hard col-
lisions, such as (subthreshold) particle production (7, n, /), are mostly influenced by
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the initial projectile and target momentum distribution in the early, non-equilibrium
stage of the reaction. The collective flow builds up later, when the system is equili-
brated and yields the expansion of the system.

3.3, The sensitivity of nuclear stopping to the in-medium cross sections

Let us now inspect in more detail the stopping of the incoming matter which implies
the equilibration of the incident longitudinal momenta in n-n collisions.

Au (200 MeV/nucl, b = 3 fmi + Au

Wb e =
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00 11, 1 " l n n
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Figure 9. Conversion of the spectalors into the par-
ticipant (fireball) component as a function of time
for the same syslem as in figure 4. All particles
having suffered at least one n-n collision are as-
sumed o belong to the fireball component. n/ng
denotes the ratio of nucleons which belong to the
spectator (participant) component. Note the rapid
onset of the thermalization process as soon as the
nuclei touch each other,
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Figure 10. Time evolution of the ceniral compres-
sion, the transverse ‘temperature’ and the average
number of collisions per nucleon of the reaclion
18T Au (200 MeVinucleon, b = 3 fm) + 197 Ay,
The local ‘temperature’ has been obtained via the
relation T = {p? }/2m for the different interac-
tions as indicated. Almost alt collisions take place
when the ‘temperature’ and densities are al their
highest values.

The thermalization process is associated with the conversion of the cold projectile
and target matter into the hot participant (fireball) component. The time evolution of
this process is depicted in figure S for a central collision. Observe the rapid onset of
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the thermalization process, as soon as the nuclei overlap in configuration space. Late
in the compression stage almost ali nucleons are found in the participant component.
This is due to the large number of n-n collisions in the system.

Some quantities of interest for macroscopic models are shown in figure 10 for
the reaction Au (200 MeV/nucleon, b = 3 fm) + Au as a function of time. The
central density increases from zero (in the initia] stage the nuclei are separated in
coordinate space) to the maximum density reached after 15 fm ¢~!. The maximum
densities achieved in this energy regime are between two and three times normal
nuclear matter density depending on the EOS used (with a soft EOS higher densities
are reached). After this compression stage the matter flows out of the central region.
Therefore the central density decreases steadily to zero.

The same behaviour can be observed in figure 10 (middie) for the transverse
kinetic ‘temperature’, which is defined as T = ({p2) + (p3))/(2m). .

Hard n-n collisions lead to the degradation of the longitudinal momenta into
transverse degrees of freedom, to the build-up of the compression zone and to the
complete stopping of the system (figure 10 (bottom)). The average number of n-n
collisions per nucleon is plotted as a function of time for different n—-n cross sections.
Almost all collisions take place in the time interval when the ‘temperature’ and the
density are at their highest values. At the end of the compression stage (t = 50-
60 fm ¢~1), practically all collisions have ceased. Hence, the following expansion
and fragmentation stage is little affected by short-range interactions and the system
evolves almost isentropically, although there are still a few collisions occurring within
the formed fragments.

The large average collision numbers N /A = 5 indicate the approach to local
equilibrium. Kinetic models predict the thermalization of the incident momenta after
only two or three collisions, depending on the beam energy [77-79].

In momentum space equilibration can be characterized by the transition of two
initially separated Fermi spheres at 7 = 0 to a thermalized matter distribution at
rest in the cM frame.

The final rapidity spectra d N/dY" for central and peripheral collisions are shown
in figure 11 for the reaction Au (200 MeV/nucleon) + Au. In central collisions
complete stopping results in a Gaussian-shaped rapidity distribution at rest in the CM
frame. No remnants of the initial rapidity distributions centred around y = f¥am
are left. Only a small fraction of the nucleons are stopped and suffer sufficient
collisions to thermalize their initial momenta at large impact parameters (b = 7 fm).
Two broad distributions, centred close to the initial rapidities of target and projectile,
represent the spectator residues. They move on with little interaction. The rapidity
spectra depend little on the EOS used.

The dependence of the d N/dY distributions on the mass of the system and on
the bombarding energy is shown in figure 12: Complete stopping is observed only
for massive systems, while lighter systems exhibit broad rapidity distributions even for
very central collisions. The stopping power does not change much with bombarding
energy, if the scaled rapidity distribution d N/d(Y/Y}p) is consideredy.

For the comparison with the plastic ball data [28] we applied an experimental

1 This, in fact, remains true even [or ultra-relativistic energies: The scaled baryon rapidity distributions
for lighter systems (Si + Si at 15 GeV/nucleon and § + § at 200 GeV/nucleon) do indeed show the
same plateau shape as observed here (for Ne and Ca), both iheoretically [84] and experimentally [86,
87]. Also interesting is the theoretical observation that a remarkable part of the baryons is pushed to the
mid-rapidity zone al energies up 1o 0.8 TeV/inucleon {85].
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Figure 11. Rapidity distributions for the system Figure 12. Mass (top) and energy (botiom) depen-
197 A0 (200 (top), 400 (middle) and 800 (bottom)  dence of the rapidity distributions for the indicated
MeV/nucleon, b = 1,7 im) + %7 Au for a hard  systems. Complete stopping is observed only for
(H) and a soft () E0s. Note thai the rapidity dis- massive systems al al) energies investigated.
tributions do not depend on the £OS,

efficiency filter. Only emitted protons with an energy E > 25 MeV and emission
angles between 2.5° and 160° are plotted in the caleulated distributions. Figure 13
shows the QMD calculations (right-hand column) compared with the plastic ball data
(left-hand column) for different systems at 400 MeV/nucleon. The protons have
been determined with a spanning tree cluster algorithm {32, 51, 52]. The shape of
the distributions seems to be identical for all systems. However, this insensitivity
is only due to the selection of protons (light clusters are predominantly seen at
the projectile and target rapidities [51]). For the smaller systems there is more
transparency, because the ratio of the mean fre¢ path to the diameter of the system
is not small enough. The filter furthermore cuts out those particles which remain at
target and projectile rapidities, because of their low energy and small angles in the
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Figure 13, Mass dependence of the proton rapidity distributions. The QMD results (right)
are compared with the plastic ball data (left). Due to the efficiency cuts of the plastic
ball filter all distributions (even those for the light sysiems) look Gaussian-shaped (see,
however, figure 12).

laboratory frame respectively. Thus the plateau shapes of the unfiltered distributions
only appear to be Gaussian-shaped because of the efficiency cuts. Non-negligibie
distortions of the mid-rapidity yields have been reported for the very heavy sytem
by the plastic ball collaboration [22-29]. They are due to enhanced double-hit and
cross-talk probabilities in this high track density environment. Only detector systems
of even higher granularity, ¢.g. the GSI 4 detector system, can avoid these problems.

The sensitivity of the nuclear stopping to the poiential employed and to the
effective scattering cross section has also been investigated. Figure 14 shows that
the infiuence of the mean field on the longitudinal flow is relatively small. However,
the scattering cross section is vital for the stopping power. By using the free cross
section (without Pauli blocking) the classical collision numbers doubie. This yields an
increase in the stopping power. A global reduction of the scattering cross section with
o = 0.70"Y (sIM) yields double peaked d N/dY distributions with peaks closer
to the rapidities of the projectile and target. The double peak structure originates
from the remnants of the projectile and target spectators. It indicates an incomplete
stopping of the incident nuclei. One should, however, keep in mind that a more
complex functional dependence of o*f, e.g. on p and T, could render the systematics
of the interplay between the effective scattering cross section and the longitudinal and
transverse flow much more complicated. The dN/dY distribution of the soft EOS
with the Uehling-Uhlenbeck cross section oY (8) lies between the curves S and SIM.
The MDI (sM) modifies the stopping power slightly. The evident differences between
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Figure 14. The influence of the different interactions on the rapidity distributions
dN/dY (all particles included) obtained from the reaction 1°7 Au (200 MeV/nucleon,
b =3 fm) + '%TAu The dN/dY distributions depend strongly on the n-n cross
sections used!

the d N/dY spectra obtained from the cases o*" and oYV can be exploited for the
experimental determination of o from the d N/dY specwra for different systems at
difterent energies (see, e.g,, [51, 66]).

The measured rapidity spectra for the systems Ar (1200 MeV/nucleon) + Bal, and
KCI are in good agreement with vuu calculations [67], which use the free scattcrmg
cross section oY, A reduced—or increased—o<" fails to reproduce these data, just
as the Au + Au data show no dip.

3.4. Transverse momentum (ransfer and the concept of a temperature’

The interplay between the longitudinal and the transverse flow can be seen clearly
by inspection of the double differential cross section d?N/dydp, in figure 15. It is
shown for different impact parameters for the reaction Au (650 MeV/nucieon) + Au.

The final nucleon distribution is centred around the original beam and target ra-
pidities and momenta for peripheral collisions {at b = 7 fm). With decreasing impact
parameter the two peaks come closer to each other, merge at b = 3 [m and form a
single ‘equilibrated’ source for central collisions (b = 1 fm). The stopping of the in-
coming matter is closely related to the transverse momentum transfer. The transverse
momenta increase with decreasing impact parameter, indicating the thermalization
of the initial beam momenta (The ‘thermalization’ is studied quantitively in the next
section.)

The absolute width of the final momentum distribution is shown in figure 16,
where we compare the longitudinal and transverse ‘temperatures’ of the global system,
defined by TJ_ = ((pi) (pz) /‘7m and 1) = {p?)/m.

Iy igure 16 \lUl} and lmuulo) ShowS the Lllallb\, of the relative luasuuudc of the
longitudinal and the transverse temperature when the impact parameter changes from
1t 3 fm ¢~ !. Here a hard E0S is used, for the soft EOS the two components of the
temperatures are identical. This demonstrates a substantial sensitivity of the directed

sidewards flow to the potential (EOS). The transverse flow is less pronounced for the
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soft EOS, in agreement with the results obtained with the vUU approach [30, 33),
However, this result does not give sufficient information to conclude that the system
is equilibrated, as we will discuss in the next section.

1200 - yg7,

hu+ AU b=Timi
650 Me¥/n
0= |
1200~
=
2 O s s
= 12008 ;
=Ly b="5fm;

1200 -

Figure 15. Invariant double differential momentum
distribution d? N/dydp, for the reaction *7Au
(800 MeV/nucleon, hard E0s) + %7 Au at different
impact parameters as indicated.
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Figure 16. Excitation function of the apparent

‘temperatures’ in the system 197Au (b = 1 and
3 fm) + '97Au. The mean quadratic momenta in
beam direction T} (broken curves) and in trans-
verse direction T (full curves) are displayed for a
hard (top and middle) and a soft (bottom) EOS,
respectively in almost central collisions. ‘These
‘lemperatures’ are determined via the correspond-
ing mean quadratic momenta in the cM {rame:
Ty = (1/m){p), T = (1/2m)[(p3) + (p})}.
Note the subslantial sensitivity of the directed side-
wards Now on the E0S and the impact parameter.
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4. The importance of non-equilibrium effects and the transport coefficients

4.1. The pressure and equilibration process

Let us now investigate to what extent thermodynamic concepts, in particular local
equilibrium, are justified. The local equilibrium concept forms the basis of ideal fluid
dynamics. The assumption of global equilibrium forms the basis of most statistical
models.
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Figure 17. Time evolution of the reaction '*7Au (200 McVinucleon, 6 = 0 fm) +
197 Ay in velocity space. Observe the formation of a shock fronl where the nucleons are
deflected Lo sidewards angles.

First we investigate the evolution of the reaction Au (200 MeV/nucleon, b = 0 fm)
+ Au in velocity space. Figure 17 shows the highly anisotropic initial configuration.
When the nuclei start to touch each other in coordinate space the nucleons in the
overlap region are deflected to sidewards angles. This is a beautiful microscopic proof
of the behaviour predicted by hydrodynamics {1--18], i.e. a zone of shocked matter is
formed.

The time evolution of the density along the beam dircction (figure 18) reveals
this scenario. First a very small high density region is formed in the centre of the
reaction. This region then expands due to the further flux of matter from projectile
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Figure 18. Density profiles along the beam direction for the same reaction as in figure 17.
A plateau with approximately [.5 (imes normal nuclear matter density is formed.

and target. A plateau with density about 1.5 times normal nuclear matter density is
formed. However, we have to clarify whether this zone is equilibrated or not. The
local degree of isotropy R is defined as R = (p2)/2(p}), where py and p are taken
in the rest frame of the matter element under consideration. Then R a 0 means
total anisotropy which is characteristic for the first stage of a collision in which the
two nuclei just touch and no transverse momentum has yet becn transferred. An
isotropic momentum distribution would lead to R = 1. Note, however, that R =1
is a necessary, but not necessarily suflicient condition [or equilibration.

For heavy systems one expects to be close to a local equilibrium situation, where
viscous hydrodynamics is applicable. The values of R(wx,z) in the reaction plane
(x,z) are shown in figure 19. The two nuclei are totally thermalized (R = 1)
initially in their respective rest frames. Early in the reaction the interpenetrating
nuciei yieid a strong anisotropy in this overlap region. The remaining parts of the
projectile and target remain equilibrated, At the time of full overlap the central
density and temperatures have reached their maximal values. Here R =~ 0.5 still
appears t0 be small. When the matter starts to decompress near equilibration is
observed in this central zone.
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Figure 19. Snapshots of the time evolution of the thermalization ratlio R =
(Pi)/(‘z(Plf)) over lhe reaction plane in very central collisions. A density cut has
been intreduced in order to avoid strong statistical fluctuations {p > 0.1 p0). Equilibra-
tion is observed al the end of the reactien in the central zone.

Figure 20 shows the time evolution of R at the origin (¢ = y = 2 = 0) for the
reaction Au (b = 0 fm) + Au at 200 and 800 MeV/nucleon bombarding energy. The
display is for three different cases, showing R for all nucleons (full curve), for those
nucleons which have suffered at least one (broken curve) or even two (dotted curve)
collisions. Local equilibrium is clearly not achieved for the total system, while the
participant component equilibrates better (f2 & 0.8-0.9).

4.2. The evaluation of the stress tensor: pressure and viscosily

Information about the thermalization process can also be obtained from the stress
tensor

FPy(r, t) = /dap f(p,r )i pi — (po(r 1) (v = (vy(r, 1)) kl=1,3. (9

The interaction part of P, has been excluded from the analysis, because F;p is
to be compared with the Newtonian ansatz used in viscous fluid dynamics [6, 8, 10,
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Figure 20, Ratio of the mean quadratic momenta at
the origin of the OM frame in Lthe transverse and lon-
gitudinal directions for central Au + Au collisions
at 200 MeV/nucleon (lop} and 800 MeV/nucleon
(bottom) for all panicles (full curves), for particles
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Figure 21. Time dependence of the kinetic pressure
in the centre of the reaction for the systemn Au (200
(top). 800 (boutom} MeV/nucleon, & = 0 fm) +
Au, The broken curves correspond to the rr and
yy components of the stress tensor, full curves to
the zz component. A thermal {chain curves) and
a non-thermal pan (dotted curves) are defined for

pant componenl equilibrates much better than the nucleons which have suffered al least one collision,

spectators. This behaviour is more pronounced at
lower energies.

76]. For the local interactions used here £, is trivially isotropic. That means the
sum of the kinetic and interaction pressure will always appear 1o be more isotropic
than the kinctic pressure (stress tensor) alone. From the QMD distribution function
(see equation (2)) one obtains

1 al r=r(1))?
Pu(r.0) = gz L oo { - oL}
i=1

X (pig = (p(r, 1)) ({pio/ s} = {u(r 1)),

Figure 2} shows the time evolution of the different components of the stress
tensor. The maxima of both the zz component (full curve) and the zz component
(broken curve) appear at the same time as the maxima of the temperatures and the
central densities. However, the absolute values of these components differ from each
other, they approach one common value towards the end of the reaction. This again
reflects the importance of treating the non-equilibrium aspects during the early course
of the reaciion.

On the other hand, for fireball nucleons the zz component of the stress ténsor
(dotted curve) is almost identical to the x2 component, i.e. the fireball is near thermal
equilibrium.

Hence, the basic assumption of the three-fluid model [9, 15] is justified: each

(10)
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Au (200 MeV/nucleon, b = 0 fm) + Au al { = 20 fm ¢~ along the beam direction
z (left) and in transverse direction r (right). Note the apparent difference between the
viscosity coeflicent in the longitudinal and transverse directions.

200 T T T ' 2007 T : ; ]
- r=2 fm — z=12fm
& 2 Al partelss | & F
E 50| O Neg* 4 £ B0 B
- ol —
~ 1=
3 w0l 43 w0 E
E aoo d Z
= S0} = e {1 = SOf E
S Q L - -
ol gege®®i%eepy, . P P kit ittt -
200 T T . . 2007 T T T .
_ r=4& fm - | z=4 fm
-~ o~
E wef 4 E 1of F
t [-1-3-] e ‘.\:
2> ot 42 wo} E
(] Q
g o o ] ; |
50 @ " E 5¢ | -
4 = =
0-1 na:"".‘:‘.“"n g -. O‘I vngun?unnuv .
200 T T T i i T T T ™
- | r=6fm | .
NE 50 NE z=§ fin
e [ =
~ 1>
> 00 4= s i
g [ uu“uou g
50 R ]
[ =
r -'.°°'a FLLLLT
ol 1 \ f . ol , . . .
-0 -5 0 5 0 -0 5 0 5 ]
z [fm] rIfm]

Figure 23. Same as figure 22 for 800 MeV/nucleon (evaluated at 10 fm ¢=!)

of the three components closely approach thermal ¢quilibrium. The non-equilibrium
effects are most important at the beginning of the reaction.

4.3. The applicability of macroscopic models
Can the concept of viscous fluid dynamics {6, 8, 10, 76] be applied to heavy ion
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collisions? The viscosity coeflicients # (shear viscosity) and £ (bulk viscosity) are
defined by the following Newtonian form of the stress tensor.

The viscosity and its density and temperature dependence serve as a constitutive
equation for hydrodynamical calculations. In a microscopic model these viscosity
cocflicicnts can be determined by comparing the exact pressure tensor (equation (9))
to the Newtonian form (equation (11)) {80]. Furthermore this Newtonian ansatz itself
can be checked. This means that unique coefficients n and £ should be found so that
all, in general anisotropic, components of the stress tensor obey relation (11) with
the same coeflicients. However, we find here that the coefficients for the longitudinal
components of the stress tensor are about a factor of three larger than the coeflicient
for the transverse component.

Figure 21 shows the shear viscosity coefficient as a function of both the transverse
(denoted by r), and the longitudinal (denoted with z) distance from the origin, ex-
tracted for the reaction Au (200 MeV/nucleon, b = 0 fm) + Au, at 20 fm ¢™! (note
the cylindrical symmetry of the system). The left-hand column shows the longitudi-
nal viscosity coeflicient n,_, for all particles and for particles which have collided at
least once. 7., reaches maximum values around 60 MeV fm~? ¢~! in the highest
density region, if all particles are considered. It drops to zero at larger distances
from the centre due to the density and temperature dependence. In contrast, the
participant component reaches values of approximately 20 MeV fm~2 ¢! only. The
right-hand column shows the transverse component 7., which reaches maximum val-
ues of 20 MeV fm~2 ¢~!, which are nearly identical to the ‘participant’ component.
The same situation is found for higher energies (sce figure 23). A maximum viscosity
coefficient of 130 MeV fm~? ¢! is needed in order to get a proportionality be-
tween the stress tensor and velocity gradient at 800 MeV/nucleon. For the transverse
component a maximum value of 20 MeV fm~2? ¢! is found. A higher value of the
viscosity coeflicient is found in the longitudinal direction.

Previous one- [6], two- [8] and three-dimensional [10] viscous hydrodynamical
calculations used much smaller viscosity coefficients than those obtained by kinetic
theories. These low values were motivated by fission fragment spectra, calculated by
Hofmann and Nix [81]. However, recently hot fission experiments have lead to much
higher extracted viscosity coefficients [82] in accordance with the estimates of kinetic
theories [72, 73).

Recent hydrodynamical calculations [76] show that only such high viscosity co-
efficients can explain the flow and bounce-off data. However, viscosity coeffi-
cients of 60 MeV fm~2 c¢-! yield better agrecement with the experimentally ob-
served in-plane sidewards, while the oft-plane squeeze-out are to be reproduced with
7 = 40 MeV fm~? ¢! (see also [63]). This is in qualitative agreement with the
previous results.

5. Summary and conclusions

We have investigated the ‘stopping power’ of nuclei and the thermalization process
employing the QMD approach.
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The mean free path of the nucleons, A, which has been calculated microscopically,
8 found to be mass independent, e.g. it can be considered as a ‘material’ constant.
A, however, is strongly encrgy dependent; it decreases with the energy, in contrast to
the naive expectation based on classical kinetic theory [75], which yields an increasing
A because o decreases with energy. This decrease is a genuine quantum statistical
effect. In the QMD (and the vuu) model it ariginates from the ‘Pauli blocking’ of the
collisions, which becomes more important at low energies, due to the occupied phase
space. The ‘soft’ collisions at very low /s are found to be most strongly blocked.
Even at high energies (1 GeV/nucleon) more than 20% of the collisions are still
blocked. Classical molecular dynamics [40-49], which do not include this quantum
effect, therefore overestimate stopping, thermalization and collective flow.

The rapidity distributions only show stopping for heavy systems, independent of
the energy. However if onc takes only free protons and in addition the efficiency
filter of the plastic ball into account, the shapes of the d N/dY distributions are also
found to be mass independent. The rapidity distributions are very sensitive to the
n-n Cross sections, but do not depend on the EOS,

In order to analyse the thermalization achieved in heavy ion collisions, a local
analysis of macroscopic quantities, such as density, mean moments of the momenta
and the pressure, have been performed. We have found that non-equilibrium aspects
play an important role in heavy ion reactions. At the time when all the observables
from which one wants to extract the equation of state are established, the reaction
cannot be cast in a one- or two-fluid dynamical picture. A rapid approach to local
equilibration is observed in a three-fluid decomposition. These components can be
experimentally distinguished by their clear separation in phase space (Y and py). The
dynamical evolution of the reaction is dominated by the interaction of the projectile
with the participants, and, scparately, by the target with the participants. The direct
interpenetration of projectile and target is not observed.

The viscous three-component fluid dynamical model and anisotropic hydrody-
namics [88] seem to be the only macroscopic models which can incorporate the
non-equilibrium effects in a proper way.

This also points to the necessity of looking for signaturcs of the equation of
state in those observables which are dominated by nucleons from the participant
component only, because here the distortion of the observables due to ‘spectators’
and due to momentum-dependent effects is minimized.
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