30 research outputs found

    Spin - Rotation Coupling Observed in Neutron Interferometry

    Full text link
    Einstein's theory of general relativity and quantum theory form the two major pillars of modern physics. However, certain inertial properties of a particle's intrinsic spin are inconspicuous while the inertial properties of mass are well known. Here, by performing a neutron interferometric experiment, we observe phase shifts arising as a consequence of the spin's coupling with the angular velocity of a rotating magnetic field. The resulting phase shifts linearly depend on the frequency of the rotation of the magnetic field. Our results agree well with the predictions derived from the Pauli - Schr\"odinger equation

    Experimental demonstration of direct path state characterization by strongly measuring weak values in a matter-wave interferometer

    Get PDF
    A novel method was recently proposed and experimentally realized for characterizing a quantum state by directly measuring its complex probability amplitudes in a particular basis using so-called weak values. Recently Vallone and Dequal showed theoretically that weak measurements are not a necessary condition to determine the weak value [Phys. Rev. Lett. 116, 040502 (2016)]. Here we report a measurement scheme used in a matter-wave interferometric experiment in which the neutron path system's quantum state was characterized via direct measurements using both strong and weak interactions. Experimental evidence is given that strong interactions outperform weak ones. Our results are not limited to neutron interferometry, but can be used in a wide range of quantum systems.Comment: 5 pages, 3 figure

    Observation of a quantum Cheshire Cat in a matter wave interferometer experiment

    Get PDF
    From its very beginning quantum theory has been revealing extraordinary and counter-intuitive phenomena, such as wave-particle duality, Schr\"odinger cats and quantum non-locality. In the study of quantum measurement, a process involving pre- and postselection of quantum ensembles in combination with a weak interaction was found to yield unexpected outcomes. This scheme, usually referred to as "weak measurements", can not only be used as an amplification technique and for minimal disturbing measurements, but also for the exploration of quantum paradoxes. Recently the quantum Cheshire Cat has attracted attention: a quantum system can behave as if a particle and its property (e.g. its polarization) are spatially separated. Up to now most experiments studying weak measurements were done with photonic setups. To reveal the peculiarities of a quantum Cheshire Cat the use of non-zero mass particles is most appealing, since no classical description is possible. Here, we report an experiment using a neutron interferometer to create and observe a purely quantum mechanical Cheshire Cat. The experimental results suggest that the system behaves as if the neutrons went through one beam path, while their spin travelled along the other.Comment: 8 pages, 4 figures and 1 tabl

    Search for dark energy with neutron interferometry

    Full text link
    We use previously obtained experimental results by neutron interferometry to effectively constrain the parameter space of several prominent dark energy models. This investigation encompasses the environment-dependent dilaton field, a compelling contender for dark energy that emerges naturally within the strong coupling limit of string theory, alongside symmetron and chameleon fields. Our study presents substantial improvements over previous constraints of the dilaton and symmetron fields, improving parameter constraints by several orders of magnitude. However, the analysis does not yield any new constraints on the chameleon field. Furthermore, we establish constraints for the projected neutron split interferometer, which has recently concluded a decisive proof-of-principle demonstration. Our symmetron simulations reveal that depending on the parameter values there are multiple static solutions with increasing number of nodes and increasing energy inside a cylindrical vacuum chamber. This agrees with results obtained earlier in the literature for infinitely parallel plates. Interestingly, while these multiple solutions can correspond to domain walls forming inside the vacuum chamber, we also find solutions that do not reach their vacuum expectation value inside the vacuum chamber, but display multiple nodes nonetheless.Comment: 11 pages, 8 figure

    Violation of a Leggett-Garg inequality using ideal negative measurements in neutron interferometry

    Full text link
    We report on an experiment that demonstrates the violation of a Leggett-Garg inequality (LGI) with neutrons. LGIs have been proposed in order to assess how far the predictions of quantum mechanics defy macroscopic realism. With LGIs, correlations of measurements performed on a single system at different times are described. The measured value of K = 1.120 +/- 0.007, obtained in a neutron interferometric experiment, is clearly above the limit K = 1 predicted by macro-realistic theories.Comment: 6 pages, 8 figure

    Three-Path Quantum Cheshire Cat Observed in Neutron Interferometry

    Full text link
    The paradoxical phenomenon of the quantum Cheshire Cat (qCC) refers to situations where different properties of a particle appear to be localised in different paths of an interferometer and therefore spatially separated. This observation is obtained by implementing a pre- and postselection procedure. The localisations are determined qualitatively through conspicuous changes induced by weak interactions. Previous demonstrations of the qCC only used the path and spin/polarisation degrees of freedom. In addition, the present experiment uses the neutron's energy as a third property in a three-path interferometer. It is demonstrated that the three properties of neutrons are found separated in different paths in the interferometer; a detailed analysis suggests that the appearance of a property is strongly related to the geometrical relation between the state vectors of pre- and postselection with weak interactions in between. If a weak interaction in a path locally generates a state vector with a component parallel to the reference state in another path, a conspicuous intensity oscillation is expected and observed. Therefore, the appearance of the observed intensity oscillations is attributed solely to the cross-terms between the reference and the newly generated state via weak interactions
    corecore