Three-Path Quantum Cheshire Cat Observed in Neutron Interferometry

Abstract

The paradoxical phenomenon of the quantum Cheshire Cat (qCC) refers to situations where different properties of a particle appear to be localised in different paths of an interferometer and therefore spatially separated. This observation is obtained by implementing a pre- and postselection procedure. The localisations are determined qualitatively through conspicuous changes induced by weak interactions. Previous demonstrations of the qCC only used the path and spin/polarisation degrees of freedom. In addition, the present experiment uses the neutron's energy as a third property in a three-path interferometer. It is demonstrated that the three properties of neutrons are found separated in different paths in the interferometer; a detailed analysis suggests that the appearance of a property is strongly related to the geometrical relation between the state vectors of pre- and postselection with weak interactions in between. If a weak interaction in a path locally generates a state vector with a component parallel to the reference state in another path, a conspicuous intensity oscillation is expected and observed. Therefore, the appearance of the observed intensity oscillations is attributed solely to the cross-terms between the reference and the newly generated state via weak interactions

    Similar works

    Full text

    thumbnail-image

    Available Versions