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Abstract. The technique of neutron interferometry was used to measure the bound

coherent neutron scattering length bcoh of the oxygen isotopes 17O and 18O. From

the measured difference in optical path between two water samples, either H2
17O or

H2
18O versus H2

natO, where nat denotes the natural isotopic composition, we obtain

bcoh,17O = 5.867(4) fm and bcoh,18O = 6.009(5) fm, based on the accurately known

value of bcoh,natO = 5.805(4) fm which is equal to bcoh,16O within the experimental

uncertainty. Our results for bcoh,17O and bcoh,18O differ appreciably from the standard

tabulated values of 5.6(5) fm and 5.84(7) fm, respectively. In particular, our measured

scattering-length contrast of 0.204(3) fm between 18O and natO is nearly a factor of 6

greater than the tabulated value, which renders feasible neutron diffraction experiments

using 18O isotope substitution and thereby offers new possibilites for measuring the

partial structure factors of oxygen-containing compounds, such as water.

PACS numbers: 61.12.-q: Neutron diffraction and scattering, 03.75.Dg: Atom and

neutron interferometry

Keywords: neutron scattering lengths, neutron interferometry, neutron diffraction,

oxygen isotopes, isotope substitution



1. Introduction

Of fundamental utility to all neutron scattering techniques, the values of neutron

scattering lengths for stable isotopes should be measured by experiment, even in cases

where theoretical predictions can be made. The bound coherent bcoh and incoherent bincoh

neutron scattering lengths listed in today’s standard tables (e.g. Rauch and Waschkowski

2003, Aleksejevs et al 1998, Sears 1992, Koester et al 1991, Mughabghab et al 1981) date

largely from measurements performed decades ago and often have large experimental

uncertainties or even recognizable systematic errors. These uncertainties are becoming

a significant limitation to the attainable accuracy of neutron diffraction data, given the

improvements offered by modern neutron diffraction instrumentation in terms of low

systematic error and high counting statistics precision (e.g. Fischer et al 2002, Zeidler et

al 2012).

In particular, the technique of neutron diffraction with isotope substitution

(NDIS) (e.g. Fischer et al 2006, sec 3.2), wherein chemically identical samples are

prepared having different isotopic compositions, allows for a complete element-specific

determination of the structure of materials in terms of partial structure factors (PSFs),

but relies on accurate knowledge of the bound coherent scattering lengths bcoh for the

isotopes of a given element. In the case when the scattering-length contrast ∆bcoh

between two isotopes is rather small (<∼ 0.5 fm), inaccuracies in the bcoh values can lead

to large relative errors.

We therefore decided to launch a program to measure the bound coherent

neutron scattering lengths of various isotopes using the sensitive technique of neutron

interferometry (e.g. Rauch and Werner 2000). Our first interferometry experiment

measured bcoh for the 13C isotope to high accuracy (Fischer et al 2008), giving a value

that differed significantly from a previous standard value measured by Koester et al

(1979). Our result not only explained a long-standing problem in NDIS experiments

employing carbon isotope substitution, but provided an accurate scattering length value

for 13C that was used for a PSF analysis of the structures of liquid CS2 and liquid CO2

(Neuefeind et al 2009).

The element oxygen plays a major role in the structure and properties of many

materials, including water. For the latter, more accurate values of scattering lengths

for the O isotopes could allow a PSF determination using neutron diffraction without

recourse to H/D isotope substitution (e.g. Soper 1997, Neilson and Adya 1996), which

is prone to quantum effects (Egelstaff 2002, 2003) and uncertainties in corrections for

inelastic scattering (e.g. Salmon et al 2004).

The most recent compilation of bound coherent neutron scattering lengths (Rauch

and Waschkowski 2003) lists recommended values of 5.805(4) fm for natO, where “nat”

denotes the natural isotopic composition, 5.805(5) fm for 16O, 5.6(5) fm for 17O and

5.84(7) fm for 18O. The isotopes 17O and 18O have natural abundances of 0.039 %

and 0.208 %, respectively, the remainder being made up by 16O. These recommended

bcoh values for oxygen are due to Koester et al (1979) and are based on an analysis
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of Christiansen filter measurements and gravity refractometry results. As compounds

containing natO are generally available in large quantities of high chemical purity, bcoh

can be measured accurately with less difficulty for natO as compared to 17O or 18O, and

in fact Koester et al (1991) lists very reproducible values for bcoh,natO as obtained by

different experimental teams.

By contrast, the experimental results for bcoh,17O and bcoh,18O are fewer in number,

have larger reported uncertainties, and are considerably less reproducible than is the case

for bcoh,natO. For example, Koester et al (1991) lists the 5.78(15) fm result for bcoh,17O

by Valentine (1968) using Bragg diffraction from a 17O-enriched UO2 single crystal,

and the 6.01(13) fm result for bcoh,18O by O’Connor (1967) using Bragg diffraction from
18O-enriched UO2.010 single crystals. These bcoh values from Bragg diffraction differ

appreciably from the recommended values tabulated by Rauch and Waschkowski (2003).

In view of the sparcity, considerable experimental uncertainties, and relatively

poor mutual agreement in the literature values for bcoh of the oxygen isotopes 17O

and 18O, and considering the importance of accurate values for these bound coherent

neutron scattering lengths vis-à-vis NDIS studies, we undertook neutron interferometry

experiments to measure bcoh,17O and bcoh,18O. Since our first interferometry study (Fischer

et al 2008), we have improved and better characterised the experimental technique

for measuring accurately the difference in average scattering length between two liquid

samples. In this case, the samples were light water enriched in either 17O or 18O isotopes

as compared to H2
natO.

2. Description of the neutron interferometry experiments

2.1. Measurement of the average bound coherent scattering length b

Neutron interferometry (e.g. Rauch and Werner 2000) is analogous to photon inter-

ferometry and provides a very accurate method for measuring bound coherent scattering

lengths. For most materials, the index of refraction n for thermal neutrons (kinetic

energy E ∼ 25 meV, wavelength λ ∼ 1.8 Å) is slightly less than unity and well-

approximated by

n = 1 − λ2 N b / 2π , (2.1)

where b (usually > 0) is the bound coherent neutron scattering length averaged over

all the atoms in the material, and N is the number density of atoms. Note that the

product Nb represents the material’s scattering-length density. A rectangular slab of

such material of thickness D has an optical path length of L = nD < D, and thus the

presence of the slab induces an optical path difference of ∆L = (n − 1)D as compared

to vacuum. A neutron of wavevector k = 2π/λ traversing the slab perpendicularly will

thereby acquire a wavefunction phase shift (in radians) of

φ = k ∆L = k (n − 1) D = − λ N b D (2.2)

relative to a trajectory of length D in vacuum. In general practice, φ can be measured

interferometrically to a precision of <∼ 1◦. By splitting a neutron’s wavefunction into two
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parts, one traversing the slab and the other not, and then recombining the two parts

coherently via interference, one can measure a difference in optical path ∆L induced by

the slab that is considerably smaller than one neutron wavelength, which leads to a very

accurate determination of b in the material, provided that λ, N and D are accurately

known.

Note that neutron interferometry is based on quantum self-interference of neutrons.

Each individual neutron’s wavefunction is a coherent superposition of states propagating

simultaneously along two different paths of the interferometer that are separated

by macroscopic distances (several cm) much larger than typical neutron coherence

lengths of order 100 Å. Various neutron interferometer geometries can be used, having

advantages and disadvantages for different types of neutron interference measurements

(see Lemmel and Wagh (2010) for a critical discussion).
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Figure 1. Top view schematic of the single-crystal Si neutron interferometer of skew-symmetric

geometry that was used for the bound coherent neutron scattering-length measurements. The

longitudinal dimension of the interferometer is about 15 cm, and the thickness of the four protruding

Si “blades” is about 3 mm. The phase-shifter slab, here placed upstream of the samples, is also made

of monocrystalline Si with thickness ∼ 5 mm. The samples held in Hellma cells can be lowered into

place from above, and neither the samples nor the phase-shifter ever make physical contact with the

interferometer crystal. The incident neutron’s wavefunction is divided by the splitter blade into a

transmitted (“beam 1”) and a diffracted (“beam 2”) component. The two mirror blades serve to

redirect the two beams along parallel paths, separated by about 32 mm. Different samples placed in

the two beams modify differently the optical path lengths of the two wavefunction components, which

thereby accumulate a relative phase difference ∆φ that affects their interference when recombined at

the analyser blade, and thereby the probability that the neutron will be detected along a parallel

trajectory by the “O” detector, or along a diffracted trajectory by the “H” detector. The phase-shifter

is scanned in angle δ about a vertical axis, thus inducing a variable additional phase shift between

the two paths of the split wavefunction. The counting rate of either the O or H detector, measured

as a function of the phase-shifter angle with and without the samples in position, allows ∆φ to be

determined.
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2.2. Differential mode for measuring ∆b

The neutron interferometry experiments were performed using the S18 instrument

(e.g. Kroupa et al 2000) at the Institut Laue-Langevin (ILL) in Grenoble, France, and

employed a single-crystal Si neutron interferometer of skew-symmetric geometry, which

is illustrated schematically in figure 1. An incident neutron’s wavefunction is split into

beams “1” and “2” that pass separately through two samples before being recombined

downstream. An advantage of the skew-symmetric geometry is that it allows both

samples to be placed perpendicular to their respective beams, which facilitates the

calculation via equation (2.2) of the phase shifts φ1 and φ2 induced by the samples in

beams 1 and 2, respectively. The choice of sign convention

∆φ = φ1 − φ2 (2.3)

then leads to ∆φ > 0 when beam 1 has a greater optical path than beam 2. This ∆φ

can be revealed and precisely measured by performing a “phase-shifter scan”, wherein

the counting rate of either of the two detectors (traditionally named “O” for a parallel

exit and “H” for a diffracted exit from the interferometer) is measured as a function of

the additional phase shift induced by a small change in the angle δ of a phase-shifter

slab placed upstream† of the samples (Rauch and Werner 2000, Eqn. 2.7). Note that

the O and H detector counts are always exactly 180◦ out of phase in φ with respect to

each other, due to conservation of probability (i.e. a given neutron is captured by only

one or the other detector).

Since the neutron wavelength λ for both beams is necessarily identical, one can

place a sample of known scattering-length density in one beam, and a sample of unknown

scattering-length density in the other beam, thus offering a more sensitive and precise

differential mode of scattering-length measurement. If the two samples also have the

same thickness D and the same atomic number density N (as can be the case for

isotopically enriched samples), then the equation for the measured phase difference (in

radians) becomes:

∆φ = λ N ∆b D , (2.4)

where ∆b is the difference in bound coherent scattering length between the two samples

as averaged over all atoms in each sample. Equation (2.3) then implies ∆φ > 0 when

the sample in beam 2 has the greater (i.e. more positive) average scattering length b.

Note however that the phase difference measured for the empty interferometer is

not zero, due to imperfections in the interferometer geometry and an arbitrary angle

† In the earlier interferometry experiment (Fischer et al 2008), the same interferometer at the S18

instrument was used, except that the phase-shifter was mounted downstream of the samples, so that

its effect on the relative optical path lengths for beams 1 versus 2 was reversed for a given rotation

angle. As we chose to retain the same definition of δ > 0 for clockwise rotation as viewed from above,

so that the relation between ∆φ and δ remained the same, our expression for ∆φ changed from φ2 −φ1

in the previous experiment to φ1 − φ2 for the present experiments. The latter expression leads to

∆φ > 0 when the sample in beam 2 has the greater scattering-length density for our differential-mode

measurements, a convention that is chosen since the sample in beam 1 is normally considered to be the

reference sample.
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offset for the phase-shifter, and can also show some time variation due to fluctuations

in ambient temperature, humidity, etc, so that it needs to be measured and subtracted

periodically. Accordingly, at each angle δ in our phase-shifter scans, generally spanning

nearly 8π (i.e. 4 periods) in φ, the counts of the O and H detectors were measured with

both samples raised above the interferometer (samples OUT), and with both samples

precisely lowered into place (samples IN). Two sinusoidal curves are thereby generated

for each detector and show a sample-induced relative phase difference of

∆φ = ∆φIN − ∆φOUT

= (φ1,IN − φ2,IN) − (φ1,OUT − φ2,OUT)

= (φ1,IN − φ1,OUT) − (φ2,IN − φ2,OUT)

= φ1 − φ2

(2.5)

which via equation (2.4) allows ∆b to be determined. In practice, as discussed

in section 2.3, account must also be made of the phase shifts induced by the

sample containers, of small systematic differences between beams 1 and 2, and of a

possible difference in thickness Dextra between the two samples. These experimental

considerations will lead to modifications of equations (2.4) and (2.5).

2.3. Experimental details for the bcoh,17O and bcoh,18O measurements

Our bound coherent neutron scattering-length measurements for 17O and 18O were

made during two experiments, performed about 8 months apart, both using the

S18 instrument with the same interferometer crystal and monocrystalline Si phase-

shifter, and both making differential-mode measurements of H2
17O versus H2

natO and

of H2
18O versus H2

natO. Light water samples are not only easier to acquire, but have

a lower average scattering-length density than heavy water samples, so that the phase-

difference measurements are less sensitive to possible differences in sample thickness.

We used heavy water samples only for the calibration of the Hellma cell dimensions

(see section 2.5). Table 1 summarizes the relevant experimental information for the two

experiments.

Each water sample was contained in a rectangular Hellma cell, made of pure silica

and equiped with two Teflon stoppers. The interior width of these cells is 18.5 mm,

and the useful interior height is about 30 mm, both dimensions being considerably

larger than the neutron beam size. Although the silica surfaces of the Hellma cells are

polished to be optically flat, the interior thickness D of the cells is quoted as 1.00(1) mm

(Weill 2007). The 1 % uncertainty in D is a limitation in the accuracy of our measured

scattering-length difference ∆b and will be discussed in more detail in section 2.5. The

two pairs of Hellma cells (one for experiment I and another for experiment II) were

at first thoroughly cleaned with acetone under ultrasound, and then rinsed with either

acetone (for drying), distilled water or D2O, as appropriate, between sample changes.

Care was taken not to soil or abrade their surfaces.

For both experiments I and II, we distinguished the two Hellma cells used in the
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Experiment I Experiment II

Date: Sept/Oct 2008 May/June 2009

H2
17O isotopic Lot I1-9092A: 71.0 % 17O, Lot 2333: 91.24 % 17O,

composition: 28.1 % 16O, 0.9 % 18O 8.35 % 16O, 0.41 % 18O

H2
18O isotopic Lot WP-07-02: 98.1 % 18O, Lot WP-08-10: 98.1 % 18O,

composition: 1.4 % 16O, 0.5 % 17O 1.4 % 16O, 0.5 % 17O

H2
natO samples: 18.2 MΩ-cm, TOC <∼ 10 ppb 18.2 MΩ-cm, TOC <∼ 10 ppb

T , N for H2O: 22(1)◦C, 0.10006(3) Å−3 27(1)◦C, 0.09993(3) Å−3

D2O samples: 99.85 % D 99.85 % D

T , N for D2O: 21(1)◦C, 0.09970(3) Å−3 27(1)◦C, 0.09960(3) Å−3

Hellma cell type: 404 QS, D = 1.00(1) mm 404 QX, D = 1.00(1) mm

Dextra: +2.9(1) µm for H2
natO −0.3(1) µm for H2

natO

cell spacing: 32.5(5) mm 31.5(5) mm

incident beam: 6 mm (h) x 6 mm (v) 6 mm (h) x 8 mm (v)

wavelength: 1.914(1) Å 1.912(1) Å

Table 1. Information pertinent to the two neutron interferometry experiments that measured bcoh,17O

and bcoh,18O. The atomic number densities N for H2O and D2O are taken from Lemmon et al (2012)

for the indicated temperatures T , where NA = 0.602214179(30)×1024 mol−1 is the value of Avogadro’s

number used for converting from mol/l to atoms/Å3. The resistivity and TOC (total organic carbon)

purity figures for H2
natO are estimates based on the specifications of the Millipore Simplicity model

185 water purification system used. The isotopic composition of the H2
natO samples was taken to be

that of Vienna standard mean ocean water (VSMOW) as described by De Laeter et al (2003). The

H2
17O and H2

18O samples were from Euriso-Top (Saclay, France), a distributor of Cambridge Isotope

Laboratories (Cambridge, MA) that produces isotopic oxygen gas and then uses it to burn natH2 gas

(supplier: Praxair, Inc., USA) in order to obtain H2
17O or H2

18O for which the estimated chemical

purities are both 99.99 %. The D2O samples were also from Euriso-Top. The lateral spacing between

the cell centers was chosen to correspond, within 1 mm, to the separation between the centers of

beams 1 and 2. The letters h and v are used to denote the horizontal and vertical dimensions of the

incident beam, respectively.

interferometer, one used for H2
natO and the other used for H2

xO, where “x” stands

for “17” or “18”. In all cases, enough of each sample was available to fill its Hellma

cell almost completely, leaving only a small air bubble at the top of the cell. Visual

observation of these air bubbles confirmed that only a minute portion of the samples

(estimate <∼ 0.1 %) evaporated across the Teflon stoppers over a 24 hour period.

Both cells were fixed in place using a custom-made Al cell holder that could be
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lowered into the interferometer (but without touching the Si crystal) via an x-y-z

translation stage which also allowed rotation about a vertical axis. A standard and

reproducible procedure was used to align the samples perpendicular to, and centered

on, beams 1 and 2 of the interferometer. Each time a pair of Hellma cells was mounted,

a laser reflected from their surfaces confirmed their orientation to within about 3 mrad

(∼ 0.2◦), amounting to less than a 0.01 % error in the measured ∆φ.

The incident beam dimensions were defined by a set of adjustable Cd slits placed

about 5 cm upstream of the interferometer crystal. In experiment II, the intensity

profiles of beams 1 and 2 were also measured by translating horizontally across their

positions a sheet of neutron-absorbing Cd having a 1 mm slit. The theoretical

asymmetry of beam 1 (Rauch and Werner 2000, chp 10) was completely smeared out

by the convolving effect of the 6 mm wide beam incident on the interferometer, and

the intensity profile of each beam was found to be flat within ∼ 5 %. The center-to-

center separation of beams 1 and 2 was thus measured to be 31.5(5) mm and this value

was used for the center-to-center cell spacing in experiment II, whereas the theoretical

beam-separation value of 32.5 mm was used for the cell spacing in experiment I. The use

of a center-to-center cell spacing equal to the beam separation to within 1 mm assured

that essentially the same part of each cell and sample was probed when placed in either

beam 1 or beam 2.

The neutron wavelength from the Si(220) monochromator reflection was measured

via diffraction from a single-crystal Si sample at both dispersive and non-dispersive

angles, resulting in λ = 1.914(1) Å for experiment I and λ = 1.912(1) Å for

experiment II. The λ/2 contamination was reduced to less than 0.1 % by placing a

set of quartz prisms just upstream of the incident beam slits (without prisms the λ/2

contamination is normally about 7 %).

The counting rate of each detector was of the order of 1 kHz, and the counting time

was typically 2 × 30 s for each IN+OUT step in a phase-shifter scan of approximately

40 steps which provided a range of almost 4 × 2π in ∆φ. An example of data from a

typical phase-shifter scan is shown in figure 2, where ∆φ can be precisely obtained from

fits to the IN versus OUT sinusoidal curves for either the O or the H detector.

Between 20 and 25 phase-shifter scans were generally performed in series as part of

a “run” for a given pair of samples (i.e. differential mode), in order to increase statistics

and to help average out possible systematic variations in ∆φ. In addition, in order to

compensate for any unexpected effects on ∆φ that could result from a sample being

mounted in one beam as compared to another, we performed for each pair of samples

two runs of phase-shifter scans wherein the Hellma cells containing the samples were

switched in position between beams 1 and 2 of the interferometer. Configuration A

was chosen to indicate H2
natO in beam 1 and H2

xO in beam 2 (resulting in ∆φA > 0

for bcoh,xO > bcoh,natO), with configuration B being the other way around. Data from a

typical pair of A&B runs, each run lasting about 20 hours, are shown in figure 3. The

uncertainty in the mean value ∆φ is taken from the standard deviation of the points

about the mean in order to include any systematic variations in ∆φ. Even so, the
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Figure 2. Neutron interferometry data for a typical phase-shifter scan from experiment II for a H2
natO

sample in beam 1 and a H2
18O sample in beam 2 (“configuration A”). The counts of the O and H

detectors are shown as a function of phase-shifter angle for samples lowered IN (solid symbols) and

samples raised OUT (open symbols) of the interferometer, and the magnitude of the sample-induced

phase difference ∆φ is indicated. The error bars due to counting statistics are smaller than the symbol

size and are not shown. The phase-shifter scan, lasting about 50 minutes, proceeds from the left to the

right along the abscissa, meaning that the IN curves lead in phase (∆φ = ∆φIN−∆φOUT > 0) since they

are slightly to the left of the corresponding OUT curves. The smooth curves represent the sinusoidal

fits that give ∆φ = +49.60(17)◦, consistent with the H2
18O sample having a greater (i.e. more positive)

scattering-length density than H2
natO (since the measured empty-cell phase difference was of smaller

magnitude). Note that the abscissa represents the physical angle δ of the phase-shifter slab in degrees,

which has an arbitrary offset angle. The relation between δ and φ is not perfectly linear (Rauch and

Werner 2000, Eqn. 2.7) and has been duly taken into account in the data analysis. The data of this

figure correspond to phase-shifter scan number 10 of the ∆φA curve in figure 3.

resulting uncertainties for ∆φA and ∆φB shown in figure 3 amount to fractional errors

of only slightly more than 1 %. For example, ∆φA = +49.43(59)◦ has a fractional error

of 1.2 %.

The silica walls of the Hellma cells, traversed perpendicularly by the neutron beams,

were 1.25(1) mm thick. The phase shift φ resulting from a total thickness of 2.5(2) mm

of silica, as compared to air, can be calculated from equation (2.2) to be about 26.7×2π

for our neutron wavelength. The possible difference in silica thickness between cells

makes it necessary to measure and subtract the phase shift of a given Hellma cell from

that of the sample contained in this cell. Hence, for each run of phase-shifter scans for a

given pair of samples, at least one empty-cell run was performed on the same cells in the

same positions in the interferometer, and thus for both the A and B configurations. Note
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Figure 3. Neutron interferometry data for two “runs” of phase-shifter scans from experiment II for the

H2
18O sample versus the H2

natO sample. For each phase-shifter scan, the IN and OUT sinusoidal curves

for the O detector were least-squares fitted to obtain their phase difference ∆φ (as per equation (2.5))

and its uncertainty as indicated by the error bars. The ∆φA curve corresponds to the H2
natO sample in

beam 1 and the H2
18O sample in beam 2 (“configuration A”) which results in a positive phase difference.

Switching the two samples in position between beams 1 and 2 for “configuration B” therefore gives a

phase difference ∆φB that is negative. The mean values ∆φA = +49.43(59)◦ and −∆φB = +50.73(66)◦

agree within their ∼ 1 % uncertainties that are taken from the standard deviation of the points about

the mean. Note also the overall anti-correlation in the systematic drifts of the ∆φA and −∆φB curves,

which suggests the existence of beam-dependent effects (see the text) on the measured phase difference.

Phase-shifter scan number 10 of the ∆φA curve corresponds to the data of figure 2.

that the data shown in figure 3 are before subtraction of the empty-cell contribution to

∆φ, which was of smaller magnitude than that of the samples.

The interferometer at the S18 instrument, including the suspended vibration-

isolated optical table, is housed within a closed concrete room or “bunker” in order

to assure relatively stable temperature and humidity conditions. The air temperature

within the bunker near the interferometer was measured and continuously recorded at

3 or 4 positions using solid-state thermometers that were calibrated against a single

alcohol thermometer of precision ±0.1 ◦C. In addition for experiment II, water from

a temperature-controlled bath was circulated in a support framework surrounding the

interferometer crystal. For both experiments, the daily temperature variations inside the

bunker near the interferometer were measured to be less than 1 ◦C, and the overall drifts

in measured temperature during the experiments were never more than 4 ◦C. As shown

in table 1, the final estimated uncertainty of ±1 ◦C in average sample temperature T

does not lead to a significant uncertainty in the sample’s atomic number density N .
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Although the concrete bunker housing the interferometer was quite effective in

assuring stable temperature and humidity conditions, intermittant low-frequency sound

vibrations (generally non-audible and non-identifiable) are the likely cause of occasional

reductions (sometimes by as much as a factor of 2 and lasting hours or even days) in

the phase contrast of the interferometer, defined as the amplitude of the O detector’s

sinusoidal curve (see figure 2) divided by its average value.

2.4. Identifying and treating systematic errors in ∆φ

Sample changes, and the switching of sample positions between A and B configurations,

required a person to enter the bunker and thereby perturb the environment surrounding

the interferometer. As a result, the ∆φ data point from the first phase-shifter scan of

a run was usually anomalous and always discarded from the calculation of the run’s

mean value. Closer inspection of figure 3 shows the anomalous value of the first point

in each of the two ∆φ curves, and also an exponential-like dampening of the anomaly

over the first 5 or so phase-shifter scans, amounting to a quasi-asymptotic drift in ∆φ at

the beginning of both runs. We interpret this initial drift, seen in essentially all of our

runs, as resulting from an overall re-equilibration of the environment within the bunker

following the person’s entry and sample manipulation. Moreover, not only the time

scale but also the magnitude and sign of this “bunker-equilibration” effect was always

the same during experiment II: a drift downwards in ∆φ with time of ∼ 3◦ over about

4 hours for both A and B configurations, meaning a drift upwards in −∆φB with time

as shown in figure 3.

Since ∆φ = φ1 − φ2 (by equation (2.5)), a systematic offset in ∆φ, whether static

or varying in time over the course of a run, is beam-dependent as it implies a relative

shift in phase between beams 1 and 2. Furthermore, since ∆φ = ∆φIN − ∆φOUT (also

by equation (2.5)), this relative shift in phase between beams 1 and 2 must be at least

slightly different for samples IN as compared to samples OUT, in order for ∆φ to retain

a residual beam-dependent effect.

The “bunker-equilibration” effect on ∆φ was also present during experiment I and

manifested a similar time scale but a greater magnitude (∼ 5◦) as well as the opposite

sign (which could depend on the mounting and alignment details for the interferometer

crystal). Note that the interferometer crystal’s mounting in experiment II benefitted

not only from a temperature-controlled bath but also from being less enclosed and

therefore more aerated, both of which could have helped reduce the magnitude of the

“bunker-equilibration” effect.

An anti-correlation in systematic offsets or drifts for ∆φA versus −∆φB, as

a function of phase-shifter scan number, can therefore indicate a potential beam-

dependent effect on ∆φ. Beyond phase-shifter scan 5 in figure 3, the data for ∆φA

show a drift upwards until scan 15 followed by a drift downwards, suggestive of a quasi-

sinusoidal variation of amplitude ∼ 2◦ and period ∼ 24 hours that appears to be at least

partially anti-correlated with the variation in −∆φB. Since these two runs were started
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at roughly the same time on consecutive days, a diurnal effect (e.g. temperature) cannot

be excluded, but most of the runs during our experiments showed no clear indication of

diurnal effects.

There was however an effect from the fluorescent lights mounted on the bunker’s

ceiling (used simply to illuminate the inside of the bunker): the Al cell holder’s IN

and OUT positions would shade the interferometer crystal differently, thus heating and

distorting the crystal differently between IN and OUT (all within the lapse of the 30 s

acquisition time for a point in a phase-shifter scan), and thereby leading to a systematic

offset of about 4◦ in ∆φ = ∆φIN − ∆φOUT, regardless of any samples or empty Hellma

cells being present. Fortunately, this beam-dependent “light effect” was found to be

quite reproducible: to within about 0.3◦ in ∆φ. The “light effect” was discovered near

the beginning of experiment II and then avoided by keeping the lights off during runs,

and seems to have been absent, or at least of smaller magnitude, during experiment I.

Tests performed just after experiment II showed that there was also a small beam-

dependent effect on ∆φ coming from the z motor used to displace the samples vertically

above the interferometer crystal. We found that the z motor had a constant holding

current even when stationary. This heat source radiated down on the interferometer

crystal differently for samples IN as compared to samples OUT, in a similar fashion as

for the “light effect”, amounting to another systematic offset in ∆φ of less than 1◦ which

was however not clearly reproducible.

In summary, we were able to identify two significant and reproducible systematic

offsets in ∆φ as resulting from the “bunker equilibration” and the “light effect”, both

having average magnitudes of about 4◦. As for other beam-dependent effects on ∆φ

due to diurnal variations or the z motor, the evidence was less reproducible and/or did

not permit a clear identification. Hence, the apparently systematic variations observed

in the data of figure 3 after scan 5 can be labelled as “other drifts” in ∆φ of unknown

origin, showing an amplitude of about 2◦ and some anti-correlation between ∆φA and

−∆φB, a behavior that is typical of that for the majority of A and B runs performed in

experiments I and II.

Note that an erroneous increase of 1◦ in the measured ∆φ = ∆φIN − ∆φOUT for

these experiments on water samples would lead to an increase of about 0.001 fm in the

obtained average scattering-length difference ∆b for the sample in beam 2 as compared

to the sample in beam 1, and therefore to an increase of three times as much (0.003 fm)

in the scattering-length difference between the oxygen sites of the two water samples.

However, since a beam-dependent effect is of opposite sign for ∆φA as compared to

−∆φB as shown by figure 3, it can be suppressed or even cancelled completely by

averaging the results of the A and B runs for a given pair of samples. The measured

phase difference ∆φx−nat as averaged over A and B configurations for a pair of H2
xO

versus H2
natO samples, including the subtraction of their corresponding empty cells, is

thus:

∆φx−nat = [ (∆φA − ∆φA,empty) − (∆φB − ∆φB,empty) ] / 2

= [ (∆φA − ∆φB) − (∆φA,empty − ∆φB,empty) ] / 2 ,
(2.6)
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where, for instance, ∆φA = ∆φA,IN − ∆φA,OUT according to equation (2.5), and ∆φA

is its mean value taken over a run of phase-shifter scans. We can then write for our

differential-mode measurements:

∆φx−nat = λ N ∆bx−nat D (2.7)

or

∆bx−nat = ∆φx−nat / ( λ N D ) , (2.8)

where ∆bx−nat is the difference in average bound coherent scattering length for the

H2
xO sample as compared to the H2

natO sample, and N is the atomic number density

for our light water samples as given by table 1.‡ The fractional uncertainty in ∆bx−nat

is limited by the ∼ 1 % uncertainty in the measured ∆φx−nat value and by the 1 %

uncertainty in D, but equations (2.7) and (2.8) do not take into account properly the

difference in interior thickness that likely exists between the two Hellma cells used in the

interferometer. Let the interior thicknesses of a given pair of Hellma cells be denoted

as D for the cell containing the H2
xO sample and D + Dextra for the cell containing the

H2
natO sample, so that equations (2.7) and (2.8) can be rewritten as

∆φx−nat = φH2
xO − φH2

natO

= λ N [ bH2
xO D − bH2

natO (D + Dextra) ]

= λ N [ (bH2
xO − bH2

natO) D − bH2
natODextra ]

(2.9)

and

∆bx−nat = bH2
xO − bH2

natO

= [ ∆φx−nat + λN bH2
natODextra ] / ( λ N D ) ,

(2.10)

where ∆φx−nat is obtained experimentally from equation (2.6), φH2
xO or φH2

natO is the

phase shift induced by the H2
xO or H2

natO sample of thickness D or D + Dextra,

respectively, and bH2
xO or bH2

natO is the average scattering length of the atoms in

the H2
xO or H2

natO sample, respectively. Only in the rare case of Dextra = 0 does

equation (2.10) reduce to equation (2.8).

2.5. Calibration of the Hellma cell dimensions

Note that we are considering D and Dextra to be the two independent experimental

quantities for a pair of Hellma cells, rather than considering their individual interior

thicknesses to be independent, as the former is more appropriate for our differential mode

of measurement in the interferometer. Equation (2.10) then shows clearly the different

‡ Note that we have ignored any quantum effects (Egelstaff 2002, 2003) that could lead to a difference in

atomic number density N between H2
17O, H2

18O and H2
natO, since such effects should be considerably

smaller than the 0.36 % lower atomic number density difference for D2O as compared to H2O (as

tabulated by Lemmon et al (2012) at a representative temperature of 24.2 ◦C), and therefore much

smaller than the other experimental uncertainties in our experiments. Indeed, the work of Fawdry

(2004) suggests that the atomic number density of H2
18O is greater than that of H2

natO by only

∼ 0.05 %.
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effects of an experimental error in the additional interior thickness Dextra between cells

as compared to an experimental error in the nominal value D common to both cells.

The 1 % manufacturer’s uncertainty in D = 1.00(1) mm implies a likely value for

Dextra on the order of ±10 µm for a given pair of cells. According to the last line of

equation (2.10), a neutron of wavelength 1.9 Å traversing an H2
natO sample of additional

thickness Dextra = 10 µm would acquire an additional phase difference of +6.1◦. Taking

the data in figure 3 as an example of an H2
xO sample versus an H2

natO sample measured

in differential mode, an error of 6.1◦ amounts to a 12 % fractional error in the obtained

value for ∆φA, and therefore in the measured average scattering-length difference for

that run, whereas the last line of equation (2.10) shows that a 1 % fractional error in

D leads to only a 1 % fractional error in ∆bx−nat, since a change in D changes the

interior thickness of both Hellma cells in the interferometer. The difference in interior

thickness Dextra between the two Hellma cells used in each experiment therefore had to

be measured accurately and taken into account via equation (2.10).

When both Hellma cells of a given pair are filled with D2O, neutron interferometry

provides an accurate measurement of their Dextra, since the large average scattering-

length density of D2O makes the measured phase difference ∆φ very sensitive to Dextra.

Equation (2.2) shows that the phase shift φ induced by 10 µm of D2O is 69.6◦ for our

neutron wavelength, more than an order of magnitude greater than that produced by

an H2
natO sample, using coherent scattering lengths of bcoh,H = −3.7405(9) fm and

bcoh,D = 6.653(4) fm which take into account the isotopic composition of hydrogen in

our samples and which use the new world-average scattering-length values for H and D

as reported by Schoen et al (2003).

We therefore performed “D2O runs” of phase-shifter scans for experiments I and II

using the same A and B configurations as for the runs on light water samples, and

taking into account the empty-cell subtraction via equation (2.6), in order to measure

the phase difference ∆φD2O−D2O for both cells filled with D2O. Since ∆bD2O−D2O = 0,

the last line of equation (2.10) can be solved for

Dextra = −∆φD2O−D2O / ( λ ND2O bD2O ) , (2.11)

where ND2O and bD2O are the atomic number density and average scattering length,

respectively, for our D2O samples. A value of Dextra = +2.9(1) µm was obtained for the

pair of Hellma cells used in experiment I§ and Dextra = −0.3(1) µm for the pair used

in experiment II. The 0.1 µm uncertainty in these Dextra values leads to a phase shift

§ The two Hellma cells used in experiment I were the same as those of our earlier experiment (Fischer

et al 2008) that used a center-to-center cell spacing of 36.0(5) mm, as opposed to 32.5(5) mm in

experiment I. In the earlier experiment, a UV-VIS spectrophotometer was used to measure the difference

in optical absorption between the two cells filled with a standard absorbing solution, resulting in

Dextra = +3.2(1) µm. During experiment I, we also performed D2O runs for a 36.0(5) mm cell spacing

and obtained Dextra = +3.3(1) µm, thus confirming the result from optical absorption within the

experimental error. Note that the variation in Dextra of about 3.3 − 2.9 = 0.4 µm (between optically

flat surfaces) over a horizontal distance of about 36 − 32.5 = 3.5 mm suggests the presence of a small

horizontal gradient in the interior thickness of at least one cell in a pair, which confirms the importance

of matching the cell spacing to the separation of beams 1 and 2 so that the same thickness of sample
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uncertainty of only 0.061◦ for light water samples, amounting to only 0.12 % of the ∆φA

value obtained from the run shown in figure 3. Note that the possibility of a phase wrap

of 2π in the measured ∆φ for the D2O runs can be excluded, since that would correspond

to a Dextra value of about 50 µm, which is far outside the manufacturer’s tolerances for

the Hellma cells and would be easily measurable using a standard micrometer.

The high accuracy of interferometric results for the Dextra of a given pair of Hellma

cells validates the idea of a differential mode of scattering-length measurement via

equation (2.10), since the final uncertainty in the obtained average scattering-length

difference ∆bx−nat is no longer limited by an uncertainty in the value of Dextra, but by

the uncertainties in D and in the measured ∆φx−nat which are both at the ∼ 1 % level.

2.6. Summary of systematic errors and their effects

Table 2 lists the various sources of systematic error (as identified and discussed in

sections 2.3, 2.4 and 2.5) that could affect our scattering-length results. Where an error’s

magnitude cannot be quantified, its quality is described. The value δ(∆φ) represents

an error’s effect on the phase difference measured via sinusoidal fits for a single phase-

shifter scan over a range of roughly 4 periods in φ (see figure 2). For comparison, the

random error (from counting statistics, phase-shifter stability, etc) for a given value of

∆φ obtained from the fits is about 0.2◦ on average.

Note that our measured ∆φ always came from fitting the IN and OUT sinusoidal

curves for the O detector only. As expected for a 3-blade (per beam) interferometer

setup such as ours, the H detector has a higher average counting rate as shown in

figure 2, but the O detector has the greater contrast since it has the same product of

transmission and Bragg-reflection coefficients for beams 1 and 2, thus permitting (in

the ideal case) completely destructive interference at the analyzer blade (Rauch and

Werner 2000, Eqns. 2.1 and 2.3). Note also that because of the perfect anti-correlation

between the O detector counts and the H detector counts after normalisation to their

sum, a simultaneous fitting of the O and H sinusoidal curves would add no additional

information and thus could not reduce the experimental uncertainty in ∆φ from a given

phase-shifter scan, a fact that we confirmed.

In table 2 the error propagation from δ(∆φ) for a given phase-shifter scan to

δ(∆φx−nat) for a given pair of samples is made via equation (2.6) assuming one pair

of 20-hour runs in the A and B configurations for both the samples and their empty

cells, where we have taken into account the time scale of the effect during a run and to

what extent it was avoided during the experiment. For example, the “light effect” would

cancel out when averaging over A and B runs to within its reproducibility of about 0.3◦

in each cell is probed for both the A and B configurations. Otherwise, although the effect of any

possible gradients in silica wall thickness on the measured ∆bx−nat would cancel after subtraction of

the empty-cell runs, the effect of a gradient in Dextra would not cancel and would generally lead to a

small but perhaps non-negligible systematic error. Likewise, it is also important that the intensities of

beams 1 and 2 do not vary significantly across their respective beam widths, and this was confirmed

by scanning a Cd slit horizontally across each beam as described in section 2.3.
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Source of error Magnitude/quality δ(∆φ) δ(∆φx−nat) δ(∆bx−nat)

“bunker equilibration”: beginning of run 4◦ 0.2◦ 0.2 am

“light effect”: controllable 4◦ 0.3◦ 0.3 am

other ∆φ drifts: intermittant 2◦ 0.5◦ 0.5 am

cell spacing: 1 mm 0.01◦ 0.01◦ 0.01 am

cell orientation: 3 mrad 0.005◦ 0.005◦ 0.005 am

sample thickness D: 10 µm – – 0.6 am

Dextra: 0.1 µm – – 0.06 am

number density N : 0.00003 Å−3 – – 0.02 am

wavelength λ: 0.001 Å – – 0.03 am

λ/2 contamination: < 0.1 % < 0.01◦ < 0.01◦ < 0.01 am

Table 2. Principle sources of systematic error and estimates of their effects δ on the results of our

interferometry experiments (see the text for discussion). Note that 1 am = 10−3 fm.

in ∆φ, being thus the value that carries over to δ(∆φx−nat). Otherwise we have not

assumed any cancellation of beam-dependent effects when estimating δ(∆φx−nat), and

where differences existed between experiments I and II, we have given an average value.

The error propagation from δ(∆φx−nat) to δ(∆bx−nat) for a given pair of samples is

made using equation (2.10), which is also used to calculate the effects of errors in Dextra,

λ, N and D. As the latter three parameters each contribute a fractional error to the

result, we have calculated their contributions to δ(∆bx−nat) using a “worst-case” value

of 0.060 fm for ∆bx−nat, corresponding roughly to that for x = 18. The error of 1◦C in

sample temperature has already been accounted for as a contribution to the error in N .

Note that if the listed errors that contribute to δ(∆φx−nat) are considered to be

mutually uncorrelated, their total contribution to δ(∆bx−nat) becomes 0.62 am or ∼ 1 %

in the case of x = 18, which is indeed roughly equal to the 0.6 am contribution from

the 10 µm error in D alone, once account is made for Dextra as discussed in section 2.5.

Note also that in the case of an isotopically pure H2
xO sample, the error in the bound

coherent scattering-length difference ∆bcoh,xO−natO = bcoh,xO−bcoh,natO for the xO isotope

is exactly a factor of 3 larger than the corresponding δ(∆bx−nat) for the water samples,

since exactly 1/3 of the atoms in the samples are oxygen.

It can therefore be ascertained that our values for bound coherent scattering lengths

are not “statistically limited” by random error, but have an accuracy that is limited by

the systematic errors listed in table 2.
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3. Results and discussion

In both experiments I and II, one pair of runs for the A and B configurations were

performed for both the H2
17O and H2

18O samples. Two such pairs of A&B runs were

performed for the empty cells in experiment I, as compared to three in experiment II.

Upon averaging over A and B configurations and subtraction of the empty-cell

contributions as per equation (2.6), the phase differences ∆φx−nat = φH2
xO − φH2

natO

between the H2
xO and H2

natO samples were obtained and are reported in table 3.‖
The values of Dextra listed in table 1 for experiments I and II were then used in

equation (2.10) to obtain the average scattering-length difference ∆bx−nat = bH2
xO −

bH2
natO between the two samples, from which the bound coherent scattering-length

difference ∆bcoh,xO−natO = bcoh,xO − bcoh,natO for the xO isotope can be determined when

account is made of the known isotopic composition of the H2
xO sample as given by

table 1. Note that since the H2
17O samples contained a non-negligible fraction of 18O,

and the H2
18O samples likewise contained some 17O, a simple iterative procedure was

needed to determine simultaneously the bcoh,17O and bcoh,18O scattering lengths that were

consistent with the measured results for ∆φ17−nat and ∆φ18−nat. This procedure was

performed independently for experiments I and II to obtain the bcoh,xO results of table 3.

A few comments are worth making about the values for the experimental

uncertainties as shown in table 3. Firstly, the uncertainty in the measured bound

coherent scattering-length difference ∆bcoh,xO−natO is smaller than the uncertainty in the

resulting bcoh,xO, since the former is obtained directly from a differential measurement

between two water samples, and the latter is then calculated from the former using

the standard value of bcoh,natO = 5.805(4) fm (Rauch and Waschkowski 2003) that

contributes an additional experimental uncertainty.

Note also that the experimental uncertainty of ±1◦ in our measured ∆φx−nat for

experiment I is larger than the ±0.5◦ for experiment II. This is partly due to the phase

contrast of the interferometer (i.e. that of the O detector’s sinusoidal curves) having

been a bit worse during experiment I (∼ 50 % as compared to nearly 70 % during

experiment II), which is tantamount to lower counting statistics, and experiment I

had as well a smaller incident beam height (6 mm as compared to 8 mm). More

importantly, note that the uncertainty in the mean ∆φ for a given run (e.g. ∆φA for

the A configuration) of phase-shifter scans is taken from the standard deviation about

this mean value, in order to account for the uncertainty due to systematic drifts in ∆φ,

as shown in figure 3. During experiment I, the beam-dependent “bunker-equilibration”

effect led to initial drifts in ∆φ (see section 2.4) that were of greater magnitude than

for experiment II. Also for experiment I, a smaller average number of phase-shifter

scans were performed per run for the H2
xO samples and for the empty Hellma cells, as

‖ In order to eliminate the possibility of a phase wrap of 2π in the measured phase difference

∆φ18−nat = φH2
18O − φH2

natO, we also performed in experiment I an interferometry run using H2
natO

versus the H2
18O sample diluted by a factor of two with H2

natO, and confirmed that the measured

phase difference also decreased by a factor of two.
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Experiment I Experiment II Recommended

∆φ17−nat: 18.5(10)◦ 20.8(5)◦

∆φ18−nat: 74.0(10)◦ 73.6(5)◦

∆b17−nat: 0.0152(9) fm 0.0192(6) fm

∆b18−nat: 0.0658(13) fm 0.0674(9) fm

∆bcoh,17O−natO: 0.062(4) fm 0.062(2) fm 0.062(2) fm

∆bcoh,18O−natO: 0.201(4) fm 0.206(3) fm 0.204(3) fm

bcoh,17O: 5.867(4) fm

bcoh,18O: 6.009(5) fm

Table 3. Experimental results for the bound coherent neutron scattering lengths of 17O and 18O

obtained from the two interferometry experiments performed 8 months apart and having used two

different pairs of Hellma cells. The measured phase differences ∆φx−nat = φH2
xO−φH2

natO are averaged

over A and B runs as per equation (2.6) and thus already include the subtraction of the corresponding

empty-cell contributions which were −4.0(5)◦ for experiment I and −23.55(25)◦ for experiment II. The

Dextra of table 1 are then taken into account using equation (2.10) to obtain the average scattering-

length difference ∆bx−nat = bH2
xO − bH2

natO between the H2
xO and H2

natO samples, from which the

bound coherent scattering-length difference ∆bcoh,xO−natO = bcoh,xO − bcoh,natO is derived using the

known isotopic composition of the H2
xO sample as given by table 1 as well as the new “world-average”

value for bcoh,H = −3.7405(9) fm as reported by Schoen et al (2003). The value bcoh,natO = 5.805(4) fm

from Rauch and Waschkowski (2003) is then used to obtain bcoh,17O and bcoh,18O.

compared to experiment II. As a result, a typical standard deviation about the mean

∆φA or ∆φB during experiment I was about ±1.2◦ as compared to only ±0.6◦ during

experiment II (e.g. see figure 3 for experiment II), both these uncertainties being reduced

by a factor of about
√

2 when averaged over the A and B runs as per equation (2.6).

As the empty cells were always run more times than the samples, the uncertainties in

the empty-cell phase differences were somewhat smaller for both experiments: ±0.5◦ for

experiment I and ±0.25◦ for experiment II.

Table 3 lists our final recommended values of bcoh,17O = 5.867(4) fm and bcoh,18O =

6.009(5) fm obtained via neutron interferometry, which differ appreciably from the

current standard tabulated values (Rauch and Waschkowski 2003) of 5.6(5) fm and

5.84(7) fm, respectively, based largely on Christiansen filter measurements by Koester et

al (1979). By contrast, there is rather remarkable agreement between our bcoh results

and those obtained from Bragg diffraction on isotopically enriched UO2 single crystals

by Valentine (1968) for 17O (5.78(15) fm) and O’Connor (1967) for 18O (6.01(13) fm),

although their experimental uncertainties are somewhat greater than ours. Such

agreement should encourage future use of Bragg diffraction for the measurement of
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bound coherent neutron scattering lengths when samples are not well adapted to

interferometry measurements.

4. Summary and conclusions

Motivated by the need for accurate values of bound coherent neutron scattering lengths

for the oxygen isotopes, especially as regards to the study of the structure of materials

using neutron diffraction with isotope substitution (NDIS), we undertook neutron

interferometry experiments involving 17O- and 18O-substituted water samples. Having

paid particular attention to the data analysis and to the control of possible experimental

errors, we propose our results of bcoh,17O = 5.867(4) fm and bcoh,18O = 6.009(5) fm as

new standard values for the bound coherent neutron scattering lengths of these oxygen

isotopes.

In terms of scattering-length contrast with respect to the accurately-known

accepted value of bcoh,natO = 5.805(4) fm, our interferometry results give ∆bcoh,17O−natO =

0.062(2) fm and ∆bcoh,18O−natO = 0.204(3) fm, as compared to the respective values of

−0.21(50) fm and 0.035(70) fm as deduced from the recommended tables (Rauch and

Waschkowski 2003). Most promising is our result for the scattering-length contrast

between 18O and natO that is nearly a factor of 6 greater than the hitherto tabulated

value. This result renders feasible neutron diffraction experiments using 18O isotope

substitution and thereby opens up a whole new field of possible structural studies on

materials as diverse as water, organic solvents, oxide glasses, organic acids, etc, where

the coordination environment of the O atom has an important bearing on the material

properties. We have in fact already performed 18O NDIS experiments on light and

heavy water (Zeidler et al 2011) using the D4c neutron diffractometer (Fischer et al

2002) at the Institut Laue-Langevin (Grenoble, France), where use of this method allows

for a considerable reduction in the inelastic scattering effects associated with neutron

diffraction experiments on water. A detailed account of these diffraction experiments is

given by Zeidler et al (2012).
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