8,542 research outputs found

    Variational cluster approach to correlated electron systems in low dimensions

    Full text link
    A self-energy-functional approach is applied to construct cluster approximations for correlated lattice models. It turns out that the cluster-perturbation theory (Senechal et al, PRL 84, 522 (2000)) and the cellular dynamical mean-field theory (Kotliar et al, PRL 87, 186401 (2001)) are limiting cases of a more general cluster method. Results for the one-dimensional Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom and cluster size.Comment: 4 pages, final version with minor change

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure

    A far-wing line shape theory which satisfies the detailed balance principle

    Get PDF
    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well

    Spinless Two-Band Model in Infinite Dimensions

    Full text link
    A spinless two-band model is studied in infinite dimension limit. Starting from the atomic limit, the formal exact solution of the model is obtained by means a perturbative treatment of the hopping and hybridisation terms. The model is solved in closed form in high dimensions assuming no local spin fluctuations. The non-Fermi liquid properties appearing in the metallic phase are analysed through the behaviour of the density of states and the self-energy near the Fermi level.Comment: 4 pages, 3 figures, to appear in PRB-Breif Repor

    Improved stability regions for ground states of the extended Hubbard model

    Full text link
    The ground state phase diagram of the extended Hubbard model containing nearest and next-to-nearest neighbor interactions is investigated in the thermodynamic limit using an exact method. It is found that taking into account local correlations and adding next-to-nearest neighbor interactions both have significant effects on the position of the phase boundaries. Improved stability domains for the η\eta-pairing state and for the fully saturated ferromagnetic state at half filling have been constructed. The results show that these states are the ground states for model Hamiltonians with realistic values of the interaction parameters.Comment: 21 pages (10 figures are included) Revtex, revised version. To be published in Phys. Rev. B. E-mail: [email protected]

    Break up of heavy fermions at an antiferromagnetic instability

    Full text link
    We present results of high-resolution, low-temperature measurements of the Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2. They support earlier conclusions of an electronic (Kondo-breakdown) quantum critical point concurring with a field induced antiferromagnetic one. We also discuss the detachment of the two instabilities under chemical pressure. Volume compression/expansion (via substituting Rh by Co/Ir) results in a stabilization/weakening of magnetic order. Moderate Ir substitution leads to a non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor screened by the Kondo effect. The so-derived zero-temperature global phase diagram promises future studies to explore the nature of the Kondo breakdown quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS

    Monte Carlo Simulations for the Magnetic Phase Diagram of the Double Exchange Hamiltonian

    Full text link
    We have used Monte Carlo simulation techniques to obtain the magnetic phase diagram of the double exchange Hamiltonian. We have found that the Berry's phase of the hopping amplitude has a negligible effect in the value of the magnetic critical temperature. To avoid finite size problems in our simulations we have also developed an approximated expression for the double exchange energy. This allows us to obtain the critical temperature for the ferromagnetic to paramagnetic transition more accurately. In our calculations we do not observe any strange behavior in the kinetic energy, chemical potential or electron density of states near the magnetic critical temperature. Therefore, we conclude that other effects, not included in the double exchange Hamiltonian, are needed to understand the metal-insulator transition which occurs in the manganites.Comment: 6 pages Revtex, 8 PS figure

    The RKKY interactions and the Mott Transition

    Full text link
    A two-site cluster generalization of the Hubbard model in large dimensions is examined in order to study the role of short-range spin correlations near the metal-insulator transition (MIT). The model is mapped to a two-impurity Kondo-Anderson model in a self-consistently determined bath, making it possible to directly address the competition between the Kondo effect and RKKY interactions in a lattice context. Our results indicate that the RKKY interactions lead to qualitative modifications of the MIT scenario even in the absence of long range antiferromagnetic ordering.Comment: 10 pages, 10 figures; to appear in Phys. Rev. B (1999

    Magnetic Properties of the t-J Model in the Dynamical Mean-Field Theory

    Full text link
    We present a theory for the spin correlation function of the t-J model in the framework of the dynamical mean-field theory. Using this mapping between the lattice and a local model we are able to obtain an intuitive expression for the non-local spin susceptibility, with the corresponding local correlation function as input. The latter is calculated by means of local Goldstone diagrams following closely the procedures developed and successfully applied for the (single impurity) Anderson model.We present a systematic study of the magnetic susceptibility and compare our results with those of a Hubbard model at large U. Similarities and differences are pointed out and the magnetic phase diagram of the t-J model is discussed.Comment: 28 pages LaTeX, postscript figures as compressed and uuencoded file included fil

    Frustration and the Kondo effect in heavy fermion materials

    Full text link
    The observation of a separation between the antiferromagnetic phase boundary and the small-large Fermi surface transition in recent experiments has led to the proposal that frustration is an important additional tuning parameter in the Kondo lattice model of heavy fermion materials. The introduction of a Kondo (K) and a frustration (Q) axis into the phase diagram permits us to discuss the physics of heavy fermion materials in a broader perspective. The current experimental situation is analysed in the context of this combined "QK" phase diagram. We discuss various theoretical models for the frustrated Kondo lattice, using general arguments to characterize the nature of the ff-electron localization transition that occurs between the spin liquid and heavy Fermi liquid ground-states. We concentrate in particular on the Shastry--Sutherland Kondo lattice model, for which we establish the qualitative phase diagram using strong coupling arguments and the large-NN expansion. The paper closes with some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT
    corecore