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ABSTRACT

A far—wing theory in which the validity of the detailed balance principle is

maintained in each step of the derivation is presented. The role of the total density matrix

including the initial correlations is analyzed rigorously. By factoring out the rapidly

varying terms in the complex—time development operator in the interaction representation,

better approximate expressions can be obtained. As a result, the spectral density can be

expressed in terms of the line—coupling functions in which two coupled lines are arranged

symmetrically and whose frequency detunings are u — ̂ u^ + W:,^). Using the

approximate values u> — U: i results in expressions that do not satisfy the detailed balance

principle. However, this principle remains satisfied for the symmetrized spectral density in

which not only the coupled lines are arranged symmetrically, but also the initial and final

states belonging to the same lines are arranged symmetrically as well.



I. INTRODUCTION

During the last dozen years, a number of line shape theories have been formulated,

primarily to calculate the far—wing absorption of molecular systems of interest in

atmospheric spectra.1"9 In many of these theories detailed balance which is important for

times comparable to the thermal time T, where r = It/kT, or equivalently for frequency

displacements AU> of the order r'1 from the line center, is not maintained at each step in the

development, rather it is enforced by ad hoc symmetrization procedures.10 By introducing

the complex—time development operator to analyze the role of the total* density matrix

including the initial correlations Davies et al.1 have derived a theory in which the principle

of detailed balance is rigorously satisfied. However, due to the complexity of their

formalism, the practical calculation of the far—wing absorption for molecular systems of

interest is formidable. In the present study, based on a similar method we introduce a new

complex—time development operator instead. This operator is obtained by factoring out

the rapidly varying terms in the complex—time development operators used by Davies et

al.1 The advantage of introducing the new operator arises from the fact that its

lower-order approximate expression incorporates the old one's higher-order effects. By

adopting its lowest—order approximate expression, we obtain a formalism in which the

symmetrically arrangement of two coupled lines and the correct frequency detunings follow

naturally from the derivation. As a result, the formalism satisfies detailed balance, but

still remains tractable.

In the present paper, we present the theory for the calculation of the far—wing

absorption for molecular system, calculated within the binary collision and quasistatic

approximations. In Sec. II A, we first briefly review the relation between the absorption

coefficient and the spectral density (frequency regime) or correlation function (time regime)

and their requirements so as to satisfy the principle of detailed balance. Next in Sec. H B,

we review the correlation function obtained within the framework of the theory of Davies

et al.1 including the introduction of the complex—time development operator. In Sec. II C,



we discuss improvements one can make by factoring out the rapidly varying parts of the

complex—time development operators. Then in Sec. II D, we treat the short—time limit of

the correlation function within the binary collision approximation. The simplification

resulting from the quasistatic approximation and the introduction of the line coupling

functions are discussed in Sec. II E. The symmetry relations of the line coupling functions

and their relationship to the principle of detailed balance, and intercomparisons between

different theories are discussed in Sec. II F and G, respectively. Finally, in Sec. n H we

derive the explicit form for the absorption coefficient in terms of the line coupling functions

that is the starting point for numerical calculations. These calculations and further

simplifications will be presented in a subsequent paper.13

II. THEORY

A. The correlation function and the spectral density

As is well known, the absorption of radiation at frequency u (cm"1) by a unit

volume of a gaseous sample in thermal equilibrium at temperature T is characterized by

the absorption coefficient a(u):

a(u) = £j£ na u tanh(1iu;/2kT)[F(w) + F(-w)], (1)

where na is the number density of the absorber molecule. The spectral density, F(w) is the

Fourier transform of the correlation function C(t) of the dipole moment operator in the

Heisenberg representation

F(w)=5?r e~i£JtC(t)dt, (2)
J-0>

C(t) = Tr[p(H)^H)(0) • ^H)(t)], (3)

where p(H) is the canonical density matrix. We note that the definition of the Fourier

transform in Eq. (2) is the same as that used by Davies et al.J but differs from that used in

our previous papers6 by a minus sign in the exponential. In general, the total dipole

operator of the gas, /l(t), is determined by the equation



(4)

which can easily be solved by

^) = eiHt/Tl^(0)e-iHt/?l (5)

as long as the total Hamiltonian H is explicitly independent of time. For simplicity, in the

above expressions we have dropped the Heisenberg superscript. The spectral density must

satisfy the detailed balance requirement

F(-o,) = e-^FM, (6)

or expressed more symmetrically

e^/2F(-w) = e-^^FM, (7)

where /? = 1/kT. Equivalently, the correlation function must satisfy the condition

C(-t) = C(t + i/ft), (8)

or more symmetrically

C(-t + i/m/2) = C(t + i/m/2). (9)

B. The Davies et al. expression for the correlation function

Davies et al.1 have derived a general expression for the correlation function which

satisfies the detailed balance requirement. They assume that the total Hamiltonian H is

independent of time and separate it into two parts: one commutes with the internal

coordinates of the molecules while the second does not. We not that this distinction of

Hamiltonian H usually coincides with the division of the interaction into two parts: V^

and Vani, the isotropic and the anisotropic interactions, respectively, and we use the same

subscripts to label them in the present study. However, in some cases (e.g. when the

vibrational dephasing becomes significant) a part of the isotropic interaction does not

commute with the internal coordinates since it depends on them (e.g. the vibrational

coordinates) and this part must be grouped with Vani. Accordingly, the total Hamiltonian

H is decomposed as

H = Ha + Hb + Viso + Vani = H0 + VMil (10)



where Ha and Hb are the unperturbed Hamiltonians of the absorber and the bath

molecules, respectively. Davies et al. introduce the time development operator U(t)

defined in the interaction representation by

e-iHt/K=e-4HQt/Kl](i}) (na)

or more generally, for complex time z,

e-iHz/?l = e-iHoz/ft^ (nb)

The adjoint relations of Eqs. (lla) and (lib) are given by
eiHt/^t^iHot/^ (12a)

and

(12b)

respectively. Then, with Eqs. (3), (5), (11), and (12), the correlation function C(t) can be

expressed as

C(t) = Trtf • e-
iH(t-W/^^eiHt/?l] / Tr[e^H]

= v T^fr 1 ,(Ho) e-4**^ - U(t-i/fc) H Ut(t)], (13)

where the zero— time argument of the dipole moment has been dropped, p(H0) =

three components of H0 commute with each other, one is able to express p(H0) by the

product of three components

In addition, with the fact that both of Hb and Viso commute with /!, C(t) can be written as

C(t) = v Tr{eiHat/n J p^^ . [,b pisoU(t-i/m) Jl ut(t)]b}a , (15)

where the subscript a indicates the trace over the absorber molecule only and the subscript

b denotes the trace over the remaining variables, i.e., the bath average operation.

As mentioned by Davies et al. J, if one ignores the initial correlations by

approximating p(E] ~ p(H0) in Eq. (3), one obtains an expression similar to Eq. (15) except

for the replacement of v by 1 and the replacement of U(t— i/ftt) by U(t). In that case, the



correlation function obtained does not satisfy the detailed balance requirement.

C. The complex-time development operator U(z)

The complex— time development operators U(z) and U^(z) are determined by the

following integral equations

)dz') (iea)
0

Uf(z) = 1 + j£ uVjViC*')^1, (16b)

where

Vi(z) = eiH°2/tlVanie-iHoZ/Ti'. (17)

The explicit expression of U(z) is given by

U(z) = 1 - j^* V^Odz' + (- i-

= Pexp[-j-JZVi(z')dz>], (18)

where P denotes the Dyson chronological ordering operator.

It is worth mentioning that by changing the integration variables one is able to

make the upper and lower integral limits more symmetric and to express U(z) as

(19)

At first, it seems unnecessary to introduce a new U'(z) instead of U(z) because the

expansion in terms of U'(z) looks less compact than the expansion in U(z). However, the

advantage of U'(z) lies in its approximated expression. As is well known, the exact formal

expression of U(z) is used for theoretical analysis only and, in practice, in order to evaluate



it some approximations have to be introduced. For example, in the above expansion of

U(z) one usually truncates and keeps only first few terms. In contrast with U(z), for each

term of U'(z) the n— th integration of the odd integrand over the variable z^n' is zero.

Since the integration over the variable z^n' gives a function depending on the variable

z^n~ ', the above fact implies that part of the contribution from the n— th integration has

already been taken into account. In the other words, U'(z) varies with its argument z more

slowly than U(z) does. It is worth mentioning that the higher the expansion term of U(z)

considered, the less is the fraction of the total resulting from the integrations of the

corresponding U'(z) term. The reason is that for each step of the integration, only the even

integrands survive. We note that an alternative way to introduce U'(z) is directly from a

definition of e~
iEz/U = e~ I^A U'(z) e~ 3Hoz/\ In comparison with the definition of

U(z), Eq. (lib), U'(z) is introduced more symmetrically. Based on the arguments given

above, one expects that in comparison between the expressions of e"1 z' obtained in

terms of the same order approximations of U'(z) and U(z), the former is closer to the exact

result than the latter. Therefore, we will pursue further discussion in terms of U'(z).

D. A short— time limit of C(t) in the binary collision approximation

With Eqs. (15) and (19), the correlation function C(t) can be expressed as

u,t(t)e- b a

^e^Hat/hj't(t)]b}a .(20)

The expression of C(t) given in Eq. (20) is exact and satisfies the detailed balance

requirement, Eq. (8), which can be directly verified as pointed out by Davies et al.1 For

later convenience, we can introduce a symmetric correlation function C(t) defined by

C(t) =



}a. (21)

It is obvious that the expression C(t) has more symmetry than C(t). Its physical

advantage will be discussed later. It is easy to verify that C(t) given above is an even

function. This is consistent with Eq. (9) which represents the detailed balance principle

expressed symmetrically. Similarly, in the frequency domain, in comparison with F(u>),

one expects that F(w), the Fourier transform of C(t), has more symmetry also.

In practice, to evaluate the complex—time development operators and to perform

their bath average are formidable tasks for the system consisting of one absorber molecule

and all the bath molecules. Fortunately, for atmospheric applications where the gas

pressures are low one can introduce the binary collision approximation which enable one to

focus on a much simpler system consisting of one absorber and one bath molecules. It is

worth mentioning that the formalism obtained so far is based on the assumption that the

total Hamiltonian is independent of time. However, when one adopts the binary collision

approximation and the classical translational approximation discussed later and focuses on

two interacting molecules, the total Hamiltonian of interest, in general, is dependent on

time. Therefore, for the two-molecule system the validity of the formulas which are

derived for one absorber molecule and the whole bath must be carefully checked but this is

not the topic of the present study. For the short-time limit (corresponding to the

far—wing region of the resonant lines of interest in the present study) we expect that the

expressions of the correlation functions C(t) and C(t) given by Eqs. (20) and (21),

respectively, are directly applicable for the two—molecule system. For simplicity, we don't

introduce new symbols for the two—molecule system and keep the same notations used

previously. Therefore, in all the following formulas, the quantities belong to one absorber

molecule and one bath molecule only.

In order to analyze the short—time behavior of the correlation function C(t), we first
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derive an expression for U'(z) as z —» 0

z
TT, /_ \ i i f *_iHoz'/?i..;•
U ( Z ) = 1 - J [ J_ z

e Vani dz'

(22)

Then, with Eq. (22) one can express C(t) as

C(t) = v

j eJHat/Tt eiVanit/Tt j

= v Tr[(e- i^V^ M)f • Pi..̂ "' (e^ni* g- ̂ at^ -)L (23)

where the Liouville operator L& and Lani that act on the line space have been introduced.6

By introducing a vector X0(t) defined by

i , (24)
f b

C(t) can be simply expressed as

C(t) = v Tr{ X0(t)t . Pii0e-^»i [c^-i^oCt)] }. (25)

The physical meaning of the vector X0(t) in the line space of the interacting

molecular system is clearly shown in Eq. (24). It is a direct product of two vectors. The

first vector that is defined in the line space of the absorber molecule represents an

unperturbed dipole transition vector of the absorber molecule. The components of this

vector undergo harmonic motions with the frequencies equals to U: J2 and their magnitudes

are related to the dipole matrix elements Jp[ <i|/l| j>. The second vector that is defined in

the line space of the bath molecule is simply a thermal equilibrium density vector of the

bath molecule. If the interaction between the molecules is ignored, C(t) reduces to a scalar

product of the vector X0(t) with its adjoint vector X0(t) ' given by
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i l M i j | 2 , (26)

where /*y is the reduced dipole matrix elements defined by

<»KI j> = (2i + 1) C(j 1 i;mj m mj p^. (27)

In this case, the correlation function C(t) is simply a constant.

The effects of the anisotropic interaction Vani and the isotropic interaction V^ on

C(t) are also clearly shown in Eq. (25). The former plays a more important role than the

latter since it rotates the unperturbed vector X0(t) in the line space to a new perturbed

vector e—1 ani A*0(t). Thus, the correlation function C(t) is simply a scalar product
/TV .

between the perturbed and the unperturbed vectors with pisoe ^ aai as its metric.

Similarly, the approximate expression for the symmetric correlation function C(t) in

the short— time limit is given by

C(t) = v Tr{[e- "

= v Tr{ Xj(t) • pisoe- ani [ e - i j C t ) ] e~ ani }> (28)

where

-^(piPy < i \ H \ j> |ijt> x I Jp~ |ibit>. (29)

M ' Jb

In this case, the scalar product of Xj(t) with its adjoint vector Xj(t) ' is given by

<Xj(t) |Aj(t)>- v^l^ijl2. (30)

A similar discussion about the physical meaning of the symmetric correlation function C(t)

will not be repeated here.

Before going to the next topic associated with the translational motion, we note
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that both of the lowest order approximate expressions for C(t) and C(t) still satisfy the

detailed balance principle given in Eqs. (8) and (9), respectively. This conclusion is easy to

verify directly from Eqs. (23) and (28). Although we will not check this conclusion further

in the present study, we expect that it remains true even for higher-order approximate

expressions for C(t) and C(t) as claimed by Davies et al.1

We assume that the translational motion of the two interacting molecules can be

treated classically. For a specified intermolecular separation ? designated by its

orientation fi and its distance r in a space—fixed frame, we express the anisotropic

interaction as

Vani(r) = G(Q)R(r), (31)

where G(fi) also depends on the internal coordinates of the absorber and the perturber

which span a Hilbert space for the molecules; this has not been explicitly indicated in the

above notation. Since Vani(?) does not commute with Ha and Hb, neither does G(fl).

Therefore, one has to find its eigenvectors and eigenvalues denoted by | a> and Ga,

respectively,

G(n)|a> = GJa>. (32)

Then, with Eqs. (23), (31), and (32) one is able to express C(t) as

C(t) = e^ii-^J^VpTp- ,1̂ , g i j i l j,(t), (33)

where the summation indices i, j, i' and j' exclude their magnetic quantum numbers and

gy.i«j«(0 are defined by

\|*> Trl!L(r)e-G«RW/kT-i(VlMt]? . (34)

In the above expression, {m} indicates the summation over all magnetic quantum numbers,

GQP = Ga - Gp, and the r dependence of piso has been explicitly indicated by p^r). The

remaining trace over the classical translational variables is indicated by Tr[piso(r) ]->.



13

Similarly, C(t) is given by

where

{m} ib ib o0

„- ^ ^

It is worth mentioning that in Eqs. (33) and (35) two pairs of the summation indices {i j}

and {i'j'} are not independent of each other. For a specified pair {i j}, the (i'j'} are limited

to those pairs whose i' are coupled to i and whose j' are coupled to j by the anisotropic

interaction Vani(?), respectively. In other words, due to the symmetry of the interaction,

the coupling occurs only for those lines for which the indices i and i' have the same

symmetry, and also the indices j and j' have the same symmetry. We note that both

gij.iij»(t) and gij.i>j,(t) are symmetric for the exchange {i j} « {i'j'}. However, they have

the different behaviors for the exchanges {i j} -» {j i} and {i'j'} -» {j'i1}, viz.

gji;j.i.H) = gij;i,j.(t+iVkT), (37a)

and

gji;j'i'H) = gij;i,j.(t), (37b)

which arise from the detailed balance requirement as are easily verified from their

definitions.

E. The quasistatic approximation and the line coupling functions

With the quasistatic approximation, the intermolecular separation r4 is assumed to

be fixed in the space during the time period of interest. Without loss of generality, we can

take i to lie along the space-fixed Z axis and ignore its orientation parameter fi introduced

previously. The classical partition sum for />iso(r) is approximately equal to l/nb where nb

is the number density of the perturber molecules.2'3 Then, based on the quasistatic
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approximation one is able to replace the classical ensemble average of an arbitrary function

f(r) over the translational variable r, Tr[/?iso(r)f(r)]^, by an integration over r

,4mb e-vi«W/"f(r)rMr. (38)
J o

With the replacement of the ensemble average over r given above, we pursue further

discussion in the frequency domain. The spectral density F(u>) corresponding to C(t) given

by Eqs. (33) and (34) is

F M = l R 6 y yV^r>-*,i, re^-^+^')]tg.. ,,(t)dt7T L L J J JQ 1J,1J
. . .) . >
1J 1J

ij i 'j '
In Eq. (39), the coupling functions Xij. i>j>M are defined by

)

X^i^=ll^~, I I I V/V^I (< f l l i ib>< iUmlJ><J ibl/ J>)*
1J 1>J'{m} ib ib op

Im 4rnb

|/?> ^(w), (40)

where

R'(r) = dR(r)/dr, and rc are the positive solutions of the equation

o;-GpaR(rc) = 0. (42)

In deriving the above expression, the well— known formal identity

- = f - + " S[u~ G^R(r)1 (43)

has been used to obtain the imaginary parts which are the only ones of interest here. The

functions ^ij.i}j,(w) represent the coupling effects between the {ij} lines and the {i'j'} lines.

Similarly, the symmetric spectral density F(w) corresponding to the symmetric
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correlation function C(t) is given by

= Re
ij i'j'

5 \ I I (PiPiPvP^Wvy fiji'j.^-^ji + <"j>i>) l> (44)

where

(m} 00

(45)

and

It is obvious that

and

. 4,
pa

(47a)

w) = H^Cw). (47b)

The properties of Hpa(w) given in Eqs. (47a) and (47b) are important for further

developments. With Eqs. (47a) and (47b), it is easy to derive similar properties for other

functions associated with Hpa(w). For example, the coupling functions Afi j . i>j»(w) and

Jij.iiji(w) given in Eqs. (40) and (44), respectively, obey the relationship,

^.^(u^e-^/^.^H. (48)

We note that Jij.i>j,(w) introduced here is nothing but so called the symmetric line
M

coupling functions Xiyi>\>(u} with Eq. (48) as their definitions in literatures.2"8

F. The detailed balance principle

The coupling functions *ij.i,j,(w) and Jij.i,j,(w) discussed above have the following

symmetry properties: both of them are symmetric for the exchange of indices (i j} H {i'j'},

but obey
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j;i)j)(a;)) (49a)

and

Jjijj-i.H*') = Jijji.j.N), (49b)

for the exchanges of indices {i j) -• {j i} and {i'j'} -» {j'i'}. Similar to the symmetry

properties of their partners in the time domain shown in Eqs. (37a) and (37b), the above

symmetry properties of ^ij.i>j,(w) and Sfi j . i>j>(k>) are easily verified from their definitions.

With Eqs. (39) and (49a), it is easy to prove that the detailed balance principle

given in Eq. (6) is also satisfied by F(w) expressed in terms of Xij.i>j,(w). However, we note

that in the expression of F(w) the frequency detunings u; — ̂ WH + ^j>i>) of the coupling

functions £^.^,(0;) are crucial to guarantee that detailed balance is satisfied exactly. In

the case where \u— u^\ > j|u^ — o^,\, to replace the frequency detunings u — ty(tt):i +

Wj.j,) by their approximate values (for example, u - u^) results in failure to satisfy this

principle. One can easily check this conclusion.

With respect to the symmetric spectral density F(u) which is the Fourier transform

of C(t) [= C(t+i?i/2kT)], it is obvious that

FM = e~^/2kT F(W). (50)

Therefore, the detailed balance principle given in Eq. (7) requires F(u) simply to be an

even function as C(t) is,

F(-u;) = F(u;). (51)

With Eq. (49b), it is easy to prove that Eq. (51) is valid for the expression of F(u;)

expressed in terms of Xi\.i , \ ,(v) given in Eq. (44). It is interesting to note that for F(w) the

frequency detunings w-^Wj j + Wj,j,) of the coupling functions Jij.i>j,(w) are not crucial

for the validity of Eq. (51). Instead, to replace the exact frequency detunings w — 2(1^ +

Uj,^) of Jij.i>j,(w) in the expression of F(u>) by their approximate values u— u^ or [(u —

wji)(w ~ ^j'iOP ^oes not affect the validity. This advantage arises from the fact that in

the expression of F(w) not only two coupled lines are treated equally, but also the initial
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and final states which belong to the same lines are treated equally as well. On the other

hand, in the expression of F(w), the initial and final states are not treated equally. It is

well known that detailed balance is associated to an interchange of the initial and the final

states in emission and absorption processes. It implies that a functional form with a more

symmetrical arrangement between the initial and final states is a better choice to exhibit

this principle. Therefore, it is not surprising that after approximations for the frequency

detunings have been made the validity of detailed balance remains for F(w), but not for

F(w). For example, for | u — Wjj | > j| ui^ — U:,i} \ one adopts the frequency detuning

approximation u — ̂ u-^ + u^^) ~ u- u-}i and simply expresses F(w) as

F ( o / ) ~ ~ y y (Pip-p^p-,)* Pi-Hi,-, Xi-.i,-,(u-u-i). (52)

ij i ' j

Owing to the symmetries of the summation indices i and j, and also i' and j1, F(u>) remains

an even function as required by the detailed balance principle. Therefore, we use F(w)

instead of F(o/) in the expression of the absorption coefficient a(u) given in Eq. (1) with a

replacement of [F(cj) + F(-w)] by 2cosh(?tu;/2kT)F(u).

G. Comparisons between different formalisms

Starting from the Fano's formalism11 and based on the binary collision and

quasistatic approximations, Rosenkranz2'3 (extended by Ma and Tipping6) has derived a

far—wing theory and obtained an expression of F(w) which can be expressed in the present

notation as

ij i j

It is obvious that the above expression does not satisfy detailed balance. In order to

remedy this, Rosenkranz used a method to force the detailed balance principle given in Eq.

(6) to be valid. The basic idea of this method is that since the detailed balance principle

establishes the relation between the values of F(w) associated with its positive argument
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and that associated with the negative argument, then for one— half the argument range one

assumes that the coupling functions are represented by the theoretical expression and for

the other half range, one assumes that they are obtained from the former ones by imposing

the detailed balance principle. Thus, the validity is forced to be maintained in the

formalism.

Based on the Davies et al. l formalism and adopting the lowest order approximation

for U(z) instead of U'(z) used in the present study, Boulet et al.4'5 have developed a

quasistatic resonant theory and obtained an expression of F(w) similar to Eq. (53). They

also noticed that the above expression did not satisfy detailed balance. In order to improve

it they replaced their theoretical coupling functions by model functions which are the

theoretical ones times the energetically correction factors <fpi>IJp\ and obtained the so

called energetically corrected quasistatic resonant formula4'5

(54)

i j i j
in which two coupled lines are arranged more symmetrically than before. It is interesting

to note that their model is similar to our expression of F(w) given in Eq. (39) except that

the frequency detunings of the coupling functions are u - u^ instead of u — ̂ (u^ + a^,)-

In general, the resonance frequencies of the strongly coupled lines are close to each other.

One expects that when the frequencies of interest are far away from band centers, i.e., the

criterion of | u - u-^\ > ̂ | ui^ - u^ t i, \ is valid, the frequency detuning approximations, such

as the replacement of u> - ^u^ + o^,) by u — u^ as Boulet et al.4'5 did or by other

i
choices, such as [(u— u^(u— Wj,i,)P, can be introduced. However, it turns out that due

to the sensitivity of the line coupling functions to their arguments, the validity of the

frequency detuning approximation is poor for frequencies which are not far enough away

from the band centers. In addition, as we have discussed above and as Boulet et al.4'5 have

noticed, their model does not satisfy detailed balance exactly. Therefore, based on the

discussions given above one is able to understand the origin and also the weakness of their
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empirical energetically corrected formalism.

Recently, by arranging the real parts of the upper and lower integral limits of U(z)

symmetrically, Hartmann and Boulet12 have demonstrated that the frequency detunings of

the line coupling functions should be u — ̂ (WH + <*>:,£,). But, they have not gone further to

simultaneously arrange the imaginary parts of the integral limits symmetrically.

Unfortunately, the lack of this step results in the failure to obtain the energetically

correction factors v^/V^I introduced artificially in their energetically corrected formalism.

More recently, starting from a more symmetric form of F(w)

F(W) = 1 Re Tr P e^ 0 fi • **L*fi ft dt, (55)w Jo

and with the assumption that

e-iLt 2 e-iL0t e-iilt) (56)

in which L, L0, and Ll are the Liouville operators corresponding to the total Hamiltonian

H, the unperturbed Hamiltonian Ha + Hb, and the interaction V between the absorber and

the perturber molecules, respectively, Ma et al.10 have demonstrated that one is able to

obtain a theoretical expression for F(w) similar to Boulet's Eq. (54). In addition, by using

a better approximation of exp(— iLt) to take into account the next order contribution

arising from the non— commutation of L0 and L{

e~iLt 2 \ (e41** e~iLt + e e ) (57)

combined with the more symmetric form of F(w), i.e., Eq. (55) used previously, Ma et al.10

were able to show that the frequency detunings of the line coupling functions given in Eq.

(54) should be u; - ^Wji + o^i,) instead of u — u^ and to obtain the result given in Eq.

(39). But, these authors stopped at this stage and did not discuss the role played by the

frequency detunings for the validity of the detailed balance principle.

In contrast with the theories mentioned above, in the present study the validity of

detailed balance is carefully checked in every step of the development. In addition, the role

of the total density matrix /?(H), especially the role of the initial correlations are analyzed
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more rigorously. More specifically, the main procedures and advantages resulting from the

present study are outlined as follows.

First of all, by factoring out the factor p(H0) = p^p^^o from p(H) where p^Q

represents the initial correlations related to the isotropic interaction, the remaining part of

p(H) associated with the initial correlations related to the anisotropic interaction is

implicitly contained in the complex—time development operator U(z) introduced. At this

stage of development, both expressions C(t) and C(t) derived are exact and satisfy the

detailed balance principle.

Then, based on the binary collision and quasistatic approximations, we derive an

expression for U(z) that is valid at small z limits. In order to improve the accuracy of the

approximate expression for U(z), a new method is introduced. By factoring out the rapidly

oscillating terms exp(iH0z/2fi,) and exp(—iH0z/2?i) which are easy to deal with in the

complex—time development operator U(z), the remaining part of U(z) denoted by U'(z)

varies with z more slowly. This implies that the accuracy achieved by the approximate

expression for U'(z) at small z limits is better than that for U(z). Consequently, combining

with the oscillation factors, a lower—order approximate expression for U'(z) incorporates

higher-order results for U(z). In addition, in terms of approximate expressions for U'(z),

both C(t) and C(t) satisfy the detailed balance principle, as do their Fourier transform

partners F(tJ) and F(o;). When the lowest order approximation for U'(z) is used, the initial

correlations related to the anisotropic interaction simply contribute to C(t) and C(t) (and

also F(w) and F(w)) a factor exp[-Vani(r)/kT] or two separate factors exp[-Vani(?)/2kT]

symmetrically located, respectively. Based on the quasistatic approximation, the classical

ensemble average over the translational motion is replaced by an integration over r, and

these factors as well as the initial correlations related to the isotropic interaction, p^,

become the statistical weight of the integration.

Finally, the spectral densities F(CJ) and F(o;) obtained are expressed in terms of the

line coupling functions *ij.i,j,M and Jij.i,j.(w) which are related to each other and can be



21

calculated based on a knowledge of the interactions. In these expressions, the frequency

detunings of the coupling functions are u — ̂ u^ + u^^,} which result from using U'(z)

instead of U(z). However, comparing expressions of F(w) and F(u) in the line space one

sees that for F(w) not only are two coupled lines arranged symmetrically, but also the

initial and final states belonging to the same lines are arranged symmetrically as well. The

latter's advantage becomes clear when the frequency detuning approximation u — fyu^ +

LJi, i t) - u — u/ji is introduced to simplify the calculation. In that case, the validity of the

detailed balance remains for F(w) but not for F(w).

H. The absorption coefficient a(u)

With Eqs. (1) and (44), we can express the absorption coefficient as

"M = $E nawsmh(1iw/2kT) I

„
1 1 t

_ (<a|iib> V^<i|pa
T//mpa

7|j><jib|#> )
. . . » . ) tm\ . .)
ij i J lm/ ib Jb ofl

^>Hpa[w-^{a; j i+w j ) i ))]. (58)

The value of v is usually assumed to be I.2'3 If the anisotropic interaction and the

isotropic interaction are known, at least for some simple systems (for example, C02

broadened by Ar), the above expression for a(u) can be used to do numerical calculations.

However, since in the above expression the arguments of the function Hpa depend on the

summation indices, the direct calculation requires a lot of CPU time for more complicated

systems. Therefore, some further approximations, such as the frequency detuning

approximation and the band— average approximation are introduced. These will be

discussed in detail along with numerical results in a forthcoming paper.13
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