1,666 research outputs found

    Activity and side effects of imatinib in patients with gastrointestinal stromal tumors: data from a german multicenter trial

    Get PDF
    Gastrointestinal stromal tumors (GIST) are mesenchymal tumors that in the past were classified as leiomyosarcomas or leiomyomas not responding to standard sarcoma chemotherapy. In several phase I and II trials the efficacy and safety of imatinib was shown before the largest trial ever performed in a single sarcoma entity revealed response rates (CR/PR) of 52%. This multicenter phase II trial presented here was performed to open access to imatinib for patients with unresectable or metastastatic GIST when the EORTC 62005 trial had been closed before imatinib was approved in Germany. It was designed to follow the best clinical response and to assess the efficacy, safety and tolerability of imatinib 400 mg/d in patients with unresectable or metastatic gastrointestinal stromal tumor

    Residual lung lesions after completion of chemotherapy for gestational trophoblastic neoplasia: should we operate?

    Get PDF
    The significance of residual lung metastasis from malignant gestational trophoblastic neoplasm (GTN) after the completion of chemotherapy is unknown. We currently do not advocate resection of these masses. Here, we investigate the outcome of these patients. Patients with residual lung abnormalities after the completion of treatment for GTN were compared to those who had a complete radiological resolution of the disease. None of the residual masses post-treatment were surgically removed. In all, 76 patients were identified. Overall 53 (70%) patients had no radiological abnormality on CXR or CT after completion of treatment. Eight (11%) patients had residual disease on CXR alone 15 patients had residual disease on CT (19%). During follow-up, two patients (2.6%) relapsed. One of these had had a complete radiological response post-treatment whereas the other had residual disease on CT. Patients with residual lung lesions after completing treatment for GTN do not appear to have an increased chance of relapse compared to those with no residual abnormality. We continue to recommend that these patients do not require pulmonary surgery for these lesions

    Definitive radiotherapy and Single-Agent radiosensitizing Ifosfamide in Patients with localized, irresectable Soft Tissue Sarcoma: A retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background and Purpose</p> <p>Standard therapy for soft-tissue sarcomas remains complete resection. For primary radiotherapy local control rates of 30-45% have been reported. We analyzed retrospectively 11 cases of radiochemotherapy with single-agent ifosfamide in patients with macroscopic soft-tissue sarcomas.</p> <p>Patients and Methods</p> <p>The patients were treated in irresectable high risk situations. Radiation therapy was performed with median 60 Gy. During the first and fifth week the concomitant chemotherapy with ifosfamide was added. Two patients received trimodal therapy with additional regional hyperthermia.</p> <p>Results</p> <p>The therapy was completed in 73% of the patients. Average local control time was 91 months, median disease-free-survival/overall-survival was 8/26 months. Five-year rates for local control/disease free survival/overall survival were 70%/34%/34%. The limited prognosis is mainly caused by systemic treatment failure.</p> <p>Conclusions</p> <p>The data strongly suggest a better outcome of radiochemotherapy with ifosfamide compared to radiotherapy alone and radiotherapy in combination with other radiosensitizers.</p

    The Role of Clouds: An Introduction and Rapporteur Report

    Get PDF
    This paper presents an overview of discussions during the Cloud s Role session at the Observing and Modelling Earth s Energy Flows Workshop. N. Loeb and B. Soden convened this session including 10 presentations by B. Stevens, B. Wielicki, G. Stephens, A. Clement, K. Sassen, D. Hartmann, T. Andrews, A. Del Genio, H. Barker, and M. Sugi addressing critical aspects of the role of clouds in modulating Earth energy flows. Presentation topics covered a diverse range of areas from cloud microphysics and dynamics, cloud radiative transfer, and the role of clouds in large-scale atmospheric circulations patterns in both observations and atmospheric models. The presentations and discussions, summarized below, are organized around several key questions raised during the session. (1) What is the best way to evaluate clouds in climate models? (2) How well do models need to represent clouds to be acceptable for making climate predictions? (3) What are the largest uncertainties in clouds? (4) How can these uncertainties be reduced? (5) What new observations are needed to address these problems? Answers to these critical questions are the topics of ongoing research and will guide the future direction of this area of research

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
    • …
    corecore