133 research outputs found

    Genetic differentiation between Atlantic salmon populations in the Windermere catchment

    Get PDF
    Genetic analysis, using single locus probes for genomic DNA, revealed that the juvenile Atlantic salmon populations in the Rivers Leven, Rothay and Troutbeck were related but genetically distinct. This genetic differentiation is greater than might be expected (by comparison with other salmon populations in the UK) and it is recommended that no action is taken which might promote genetic exchange between the three rivers. Thus, future fisheries management practices should treat the salmon from each site as separate genetic stocks. It is unlikely that any attempts to encourage fish currently spawning in the River Leven (downstream of Windermere) to utilize the upper catchment will be successful. The faster growth rate of juvenile salmon in the River Leven, compared with the River Rothay, probably results from a difference in temperature between the inflowing streams and the main outflow of Windermere. Precocious sexual maturation of some male parr was found in all three populations but the incidence (13-33%) is well within the range reported for other waters. Because of their enhanced growth rate, it is likely that some of the precocious males in the River Leven were 0+ fish. A very high incidence of hybridization (>18%) between Atlantic salmon and brown/sea trout was found in Troutbeck but not in the other rivers. Mitochondrial DNA analysis of these hybrids revealed them to be the product of several, independent cross-fertilizations involving both sexes of both species. The implications of this finding are discussed in relation to the availability of suitable spawning sites in Troutbeck

    Hartley transform and the use of the Whitened Hartley spectrum as a tool for phase spectral processing

    Get PDF
    The Hartley transform is a mathematical transformation which is closely related to the better known Fourier transform. The properties that differentiate the Hartley Transform from its Fourier counterpart are that the forward and the inverse transforms are identical and also that the Hartley transform of a real signal is a real function of frequency. The Whitened Hartley spectrum, which stems from the Hartley transform, is a bounded function that encapsulates the phase content of a signal. The Whitened Hartley spectrum, unlike the Fourier phase spectrum, is a function that does not suffer from discontinuities or wrapping ambiguities. An overview on how the Whitened Hartley spectrum encapsulates the phase content of a signal more efficiently compared with its Fourier counterpart as well as the reason that phase unwrapping is not necessary for the Whitened Hartley spectrum, are provided in this study. Moreover, in this study, the productā€“convolution relationship, the time-shift property and the power spectral density function of the Hartley transform are presented. Finally, a short-time analysis of the Whitened Hartley spectrum as well as the considerations related to the estimation of the phase spectral content of a signal via the Hartley transform, are elaborated

    Fast-timing measurements in neutron-rich odd-mass zirconium isotopes using LaBr3:Ce detectors coupled with Gammasphere

    Get PDF
    A fast-timing experiment was performed at the Argonne National Laboratory to measure the lifetimes of the lowest lying states of nuclei belonging to the deformed regions around mass number A 110 and A 150. These regions were populated via spontaneous fission of 252 Cf and the gamma radiation following the decay of excited states in the fission fragments was measured using 51 Gammasphere detectors coupled with 25 LaBr 3 :Ce detectors. A brief description of the acquisition system and some preliminary results from the fast-timing analysis of the fission fragment 100Zr are presented. The lifetime value of \u3c4 = 840(65) ps was found for the 2 + state in 100 Zr consistent within one standard deviation of the adopted value with 791 +26 -35 ps. This is associated with a quadrupole deformation parameter of 0.36(2) which is within one standard deviation of the literature value of 0.3556 +82 -57

    Fast-timing measurements in the ground-state band of Pd114

    Get PDF
    Using a hybrid Gammasphere array coupled to 25 LaBr3(Ce) detectors, the lifetimes of the first three levels of the yrast band in Pd-114, populated via Cf-252 decay, have been measured. The measured lifetimes are tau(2+) = 103(10) ps, tau(4+) = 22(13) ps, and tau(6+) <= 10 ps for the 2(1)(+), 4(1)(+), and 6(1)(+) levels, respectively. Palladium-114 was predicted to be the most deformed isotope of its isotopic chain, and spectroscopic studies have suggested it might also be a candidate nucleus for low-spin stable triaxiality. From the lifetimes measured in this work, reduced transition probabilities B(E2; J -> J - 2) are calculated and compared with interacting boson model, projected shell model, and collective model calculations from the literature. The experimental ratio R-B(E2) = B(E2; 4(1)(+) -> 2(1)(+))/B(E2; 2(1)(+) -> 0(1)(+)) = 0.80(42) is measured for the first time in Pd-114 and compared with the known values R-B(E2) in the palladium isotopic chain: the systematics suggest that, for N = 68, a transition from gamma-unstable to a more rigid gamma-deformed nuclear shape occurs

    First observation of rotational structures in Re 168

    Get PDF
    The first rotational sequences have been assigned to the odd-odd nucleus Re168. Coincidence relationships of these structures with rhenium x rays confirm the isotopic assignment, while arguments based on the Ī³-ray multiplicity (K-fold) distributions observed with the new bands lead to the mass assignment. Configurations for the two bands were determined through analysis of the rotational alignments of the structures and a comparison of the experimental B(M1)/B(E2) ratios with theory. Tentative spin assignments are proposed for the Ļ€h11/2Ī½i13/2 band, based on energy level systematics for other known sequences in neighboring odd-odd rhenium nuclei, as well as on systematics seen for the signature inversion feature that is well known in this region. The spin assignment for the Ļ€h11/2Ī½(h9/2/f7/2) structure provides additional validation of the proposed spins and configurations for isomers in the Au176 ā†’ Ir172ā†’Re168 Ī±-decay chain

    Multiple band structures in 169,170Re: Search for the wobbling mode in 169Re, and residual-interaction analysis of structures in 170Re

    Get PDF
    Although the observation of wobbling was once thought to be possibly confined to lutetium isotopes in Nā‰ˆ94 nuclei, the identification of this exotic collective mode in 167Ta has raised the question of the role of the proton Fermi surface with regard to this phenomenon. To investigate this issue, an experiment was performed to populate high-spin states in the N=94 nucleus 169Re. The heavy-ion reaction 55Mn+118Sn was used in conjunction with Gammasphere to detect the emitted Ī³ rays. More than 130 new transitions were added to the 169Re level scheme, including the first identification of the Ļ€i13/2 rotational sequence in this nucleus. This configuration is the structure on which all known wobbling sequences are based, but no wobbling band was observed, likely owing to the fact that the Ļ€i13/2 sequence is located at a relatively high energy in comparison with the other structures found in 169Re. Nine decay sequences are now established in this nucleus and are described within the context of the cranked shell model. In addition, significant extension of the level scheme of the odd-odd 170Re nucleus was possible and a discussion of the residual interactions for the Ļ€h 9/2Ī½i13/2 and Ļ€i13/2Ī½i13/2 configurations in this region is given as well

    Masses and Ī² -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu 160,162 Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98

    Get PDF
    The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at Aāˆ¼160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N=98. In order to address these issues, mass and Ī²-decay spectroscopy measurements of the Eu97160 and Eu99162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (Ī²2āˆ¼0.3) is discussed in relation to the unusual phenomena observed at this neutron number

    Masses and Ī² -Decay Spectroscopy of Neutron-Rich Odd-Odd Eu 160,162 Nuclei: Evidence for a Subshell Gap with Large Deformation at N=98

    Get PDF
    The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at Aāˆ¼160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2+ levels in some even-even nuclei at N=98. In order to address these issues, mass and Ī²-decay spectroscopy measurements of the Eu97160 and Eu99162 nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (Ī²2āˆ¼0.3) is discussed in relation to the unusual phenomena observed at this neutron number

    High-spin structure of odd-odd Re 172

    Get PDF
    A significant extension of the level scheme for the odd-odd nucleus Re172 was accomplished through the use of the Gammasphere spectrometer. States up to a tentative spin assignment of 39 were observed and two new structures were identified. Configuration assignments are proposed based on alignment properties and observed band crossings
    • ā€¦
    corecore