7,096 research outputs found

    On Waylen's regular axisymmetric similarity solutions

    Get PDF
    We review the similarity solutions proposed by Waylen for a regular time-dependent axisymmetric vacuum space-time, and show that the key equation introduced to solve the invariant surface conditions is related by a Baecklund transform to a restriction on the similarity variables. We further show that the vacuum space-times produced via this path automatically possess a (possibly homothetic) Killing vector, which may be time-like.Comment: 8 pages, LaTeX2

    Developing Belief in Online Teaching: Efficacy and Digital Transformation

    Get PDF
    Digital pedagogies, blended, hybrid, and online learning are not new, indeed discussions about their role in higher education are well documented. With some notable exceptions however, many of these discussions, and many more attempts at implementation, have been small in scale, operating at the level of a single course, or even single members of staff. Barriers at national, institutional and personal levels all contributed to slow uptake of digital learning. The summer of 2020 though saw institutions across the UK, and indeed the world, forced into rapid transition to online learning in the face of the COVID-19 pandemic. This paper examines our work supporting a school - which achieved high student satisfaction rates - within a large post-92 university in this transition. With specific attention to academic identity and efficacy, we examine the approaches that were taken in helping academics to climb over the digital hurdle towards good online teaching. We suggest that a three-pronged approach is needed to overcome these barriers and create the belief in digital that is needed for a successful online transition, and for continued growth. These are a collective ‘all in it together’ approach, placing curriculum, rather than technology at the heart of the work, and also ensuring solid institutional support that does not rely on early adopters

    Self-Calibration of Cameras with Euclidean Image Plane in Case of Two Views and Known Relative Rotation Angle

    Full text link
    The internal calibration of a pinhole camera is given by five parameters that are combined into an upper-triangular 3×33\times 3 calibration matrix. If the skew parameter is zero and the aspect ratio is equal to one, then the camera is said to have Euclidean image plane. In this paper, we propose a non-iterative self-calibration algorithm for a camera with Euclidean image plane in case the remaining three internal parameters --- the focal length and the principal point coordinates --- are fixed but unknown. The algorithm requires a set of N7N \geq 7 point correspondences in two views and also the measured relative rotation angle between the views. We show that the problem generically has six solutions (including complex ones). The algorithm has been implemented and tested both on synthetic data and on publicly available real dataset. The experiments demonstrate that the method is correct, numerically stable and robust.Comment: 13 pages, 7 eps-figure

    Distribution of Aromatic Compounds in Coastal Bermudagrass Cell Walls Using Ultraviolet Absorption Scanning Microspectrophotometry

    Get PDF
    The distribution of aromatic constituents, including lignin , in the leaf cell walls of Coastal hermudagrass (Cynodon dacrylon (L.) Pers.) was investigated using scanning ultraviolet (UV) microspectrophotometry. Leaf blade sections and individual tissue types were scanned at three wavelengths representing the absorbance maxima (318, 287 and 250 nm) of aromatic constituents present in bermudagrass leaves. The measured absorbance data were printed in a geometric arrangement to produce an image of the distribution and amount of aromatic constituents among and within cell wall types which vary in digestibility . Differences in absorbance were observed among cell wall types, among walls of the same cell type, and at different sites in individual cell walls. Scans of the mid vein at lOX magnification showed that various tissues and cells could be distinguished on the basis of U V absorbance. The abaxial sclerenchyma and mestome sheath gave the highest absorbance followed by those of the epidermis and parenchyma bundle sheath . The lowest levels of absorbance were observed in the mesophyll, parenchyma tissue and xylem tissue. Images produced from scanning individual cell walls at lOOx magnification showed the heterogeneous nature of aromatic constituents within a cell wall. Varying the wavelength resulted in similar but not identical images, indicating that variations in the chemical structures of aromatic constituents in the cell wall can he detected using this technique

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    Covariant spinor representation of iosp(d,2/2)iosp(d,2/2) and quantization of the spinning relativistic particle

    Get PDF
    A covariant spinor representation of iosp(d,2/2)iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2)iosp(d,2/2) algebra.Comment: Updated version with references included and covariant form of equation 1. 23 pages, no figure

    Long-range pollution transport during the MILAGRO-2006 campaign: a case study of a major Mexico City outflow event using free-floating altitude-controlled balloons

    Get PDF
    One of the major objectives of the Megacities Initiative: Local And Global Research Observations (MILAGRO-2006) campaign was to investigate the long-range transport of polluted Mexico City Metropolitan Area (MCMA) outflow and determine its downwind impacts on air quality and climate. Six research aircraft, including the National Center for Atmospheric Research (NCAR) C-130, made extensive chemical, aerosol, and radiation measurements above MCMA and more than 1000 km downwind in order to characterize the evolution of the outflow as it aged and dispersed over the Mesa Alta, Sierra Madre Oriental, Coastal Plain, and Gulf of Mexico. As part of this effort, free-floating Controlled-Meteorological (CMET) balloons, commanded to change altitude via satellite, made repeated profile measurements of winds and state variables within the advecting outflow. In this paper, we present an analysis of the data from two CMET balloons that were launched near Mexico City on the afternoon of 18 March 2006 and floated downwind with the MCMA pollution for nearly 30 h. The repeating profile measurements show the evolving structure of the outflow in considerable detail: its stability and stratification, interaction with other air masses, mixing episodes, and dispersion into the regional background. Air parcel trajectories, computed directly from the balloon wind profiles, show three transport pathways on 18–19 March: (a) high-altitude advection of the top of the MCMA mixed layer, (b) mid-level outflow over the Sierra Madre Oriental followed by decoupling and isolated transport over the Gulf of Mexico, and (c) low-level outflow with entrainment into a cleaner northwesterly jet above the Coastal Plain. The C-130 aircraft intercepted the balloon-based trajectories three times on 19 March, once along each of these pathways; in all three cases, peaks in urban tracer concentrations and LIDAR backscatter are consistent with MCMA pollution. In comparison with the transport models used in the campaign, the balloon-based trajectories appear to shear the outflow far more uniformly and decouple it from the surface, thus forming a thin but expansive polluted layer over the Gulf of Mexico that is well aligned with the aircraft observations. These results provide critical context for the extensive aircraft measurements made during the 18–19 March MCMA outflow event and may have broader implications for modelling and understanding long-range transport

    Developing an On-Line Interactive Health Psychology Module.

    Get PDF
    On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller 'content chunks' which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of the underlying philosophy that the medium is part of the message, we considered interactivity to be a key element in engaging the student with the material. Consequently, the key aim of this development was to stimulate and engage students, promoting better involvement with the academic material, and hence better learning. It was hoped that this was achieved through the development of material including linked programmes and supporting material, small Java Scripts and basic email, forms and HTML additions. This material is outlined as are some of the interactive activities introduced, and the preliminary student and tutor experience described

    The electron electric dipole moment enhancement factors of Rubidium and Caesium atoms

    Full text link
    The enhancement factors of the electric dipole moment (EDM) of the ground states of two paramagnetic atoms; rubidium (Rb) and caesium (Cs) which are sensitive to the electron EDM are computed using the relativistic coupled-cluster theory and our results are compared with the available calculations and measurements. The possibility of improving the limit for the electron EDM using the results of our present work is pointed out.Comment: AISAMP7 Conference paper, Accepted in Journal of Physics: Conference Series: 200

    Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity -- temperature relation

    Get PDF
    The physical processes that define the spine of the galaxy cluster X-ray luminosity -- temperature (L-T) relation are investigated using a large hydrodynamical simulation of the Universe. This simulation models the same volume and phases as the Millennium Simulation and has a linear extent of 500 h^{-1} Mpc. We demonstrate that mergers typically boost a cluster along but also slightly below the L-T relation. Due to this boost we expect that all of the very brightest clusters will be near the peak of a merger. Objects from near the top of the L-T relation tend to have assembled much of their mass earlier than an average halo of similar final mass. Conversely, objects from the bottom of the relation are often experiencing an ongoing or recent merger.Comment: 8 pages, 7 figures, submitted to MNRA
    corecore