13 research outputs found

    Bayesian joint estimation of non-Gaussianity and the power spectrum

    Get PDF
    We propose a rigorous, non-perturbative, Bayesian framework which enables one jointly to test Gaussianity and estimate the power spectrum of CMB anisotropies. It makes use of the Hilbert space of an harmonic oscillator to set up an exact likelihood function, dependent on the power spectrum and on a set of parameters αi\alpha_i, which are zero for Gaussian processes. The latter can be expressed as series of cumulants; indeed they perturbatively reduce to cumulants. However they have the advantage that their variation is essentially unconstrained. Any truncation(i.e.: finite set of αi\alpha_i) therefore still produces a proper distribution - something which cannot be said of the only other such tool on offer, the Edgeworth expansion. We apply our method to Very Small Array (VSA) simulations based on signal Gaussianity, showing that our algorithm is indeed not biased.Comment: 11pages, 4 figures, submitted to MNRA

    Re-visiting Meltsner: Policy Advice Systems and the Multi-Dimensional Nature of Professional Policy Analysis

    Get PDF
    10.2139/ssrn.15462511-2

    The Ethical Odyssey of Oliver North

    Get PDF

    A MILITARY ETHIC IN AN AGE OF TERROR

    Get PDF

    Humanitarianism and the Laws of War

    No full text

    Books in review

    No full text

    Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes

    Get PDF
    Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85-0.92, p = 6.3 x 10(-10)), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49-0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.Peer reviewe
    corecore