5,135 research outputs found

    On the Determination of the Polarized Sea Distributions of the Nucleon

    Get PDF
    The possibilities to determine the flavor structure of the polarized sea (antiquark) distributions of the nucleon via vector boson (γ,W±,Z0)(\gamma^*, W^{\pm}, Z^0) production at high energy polarized hadron--hadron colliders, such as the Relativistic Heavy--Ion Collider (RHIC), are studied in detail. In particular the perturbative stability of the expected asymmetries in two representative models for the (un)broken flavor structure are investigated by confronting perturbative QCD leading order predictions of the expected asymmetries with their next--to--leading order counterparts.Comment: 28 pages, LaTe

    Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    Get PDF
    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests

    High-performance heat pipes for heat recovery applications

    Get PDF
    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained

    Explicit finite element implementation of a shape memory alloy constitutive model and associated analyses

    Get PDF
    Shape memory alloys (SMA) represent an important class of smart metallic materials employed in various innovative applications thanks to their unique thermomechanical behavior. Since the 1980s, several SMA constitutive models have been proposed and implemented into both commercial and academic finite element analysis software tools. Such models have demonstrated their reliability and robustness in the design and optimization of a wide variety of SMA-based components. However, most models are implemented using implicit integration schemes, thus limiting their applicability in highly nonlinear analyses. The objective of this work is to present a novel explicit integration scheme for the numerical implementation of the three-dimensional Souza-Auricchio model, a phenomenological model able to reproduce the primary SMA responses (i.e., pseudoelasticity and shape memory effect). The model constitutive equations are formulated by adopting the continuum thermodynamic theory with internal variables, following a plasticity-like approach. An elastic predictor-inelastic corrector scheme is here used to solve the time-discrete non-linear constitutive equations in the explicit framework. The proposed algorithm is investigated through several benchmark boundary-value problems of increasing complexity, considering both pseudoelastic and shape memory response in quasi-static conditions; a comparison with an implicit integration scheme is also performed. Such numerical tests demonstrate the ability of the algorithm to reproduce key material behaviors with effectiveness and robustness. Particularly, the analysis of SMA cables demonstrates the effectiveness of the explicit algorithm to solve complex problems involving widespread nonlinear contact, which prevent the convergence of the implicit scheme. Details such as mass-scaling options are also discussed

    Widely-tunable mid-IR frequency comb source based on difference frequency generation

    Get PDF
    We report on a mid-infrared frequency comb source of unprecedented tunability covering the entire 3-10 {\mu}m molecular fingerprint region. The system is based on difference frequency generation in a GaSe crystal pumped by a 151 MHz Yb:fiber frequency comb. The process was seeded with Raman shifted solitons generated in a highly nonlinear suspended-core fiber with the same source. Average powers up to 1.5 mW were achieved at 4.7 {\mu}m wavelength.Comment: 3 pages, 3 figure

    The Newton stratification on deformations of local G-shtukas

    Full text link
    Bounded local G-shtukas are function field analogs for p-divisible groups with extra structure. We describe their deformations and moduli spaces. The latter are analogous to Rapoport-Zink spaces for p-divisible groups. The underlying schemes of these moduli spaces are affine Deligne-Lusztig varieties. For basic Newton polygons the closed Newton stratum in the universal deformation of a local G-shtuka is isomorphic to the completion of a corresponding affine Deligne-Lusztig variety in that point. This yields bounds on the dimension and proves equidimensionality of the basic affine Deligne-Lusztig varieties.Comment: several improvements, definition of local G-shtuka is change

    Orbital evolution of a particle around a black hole: II. Comparison of contributions of spin-orbit coupling and the self force

    Full text link
    We consider the evolution of the orbit of a spinning compact object in a quasi-circular, planar orbit around a Schwarzschild black hole in the extreme mass ratio limit. We compare the contributions to the orbital evolution of both spin-orbit coupling and the local self force. Making assumptions on the behavior of the forces, we suggest that the decay of the orbit is dominated by radiation reaction, and that the conservative effect is typically dominated by the spin force. We propose that a reasonable approximation for the gravitational waveform can be obtained by ignoring the local self force, for adjusted values of the parameters of the system. We argue that this approximation will only introduce small errors in the astronomical determination of these parameters.Comment: 11 pages, 7 figure

    An aperture masking mode for the MICADO instrument

    Full text link
    MICADO is a near-IR camera for the Europea ELT, featuring an extended field (75" diameter) for imaging, and also spectrographic and high contrast imaging capabilities. It has been chosen by ESO as one of the two first-light instruments. Although it is ultimately aimed at being fed by the MCAO module called MAORY, MICADO will come with an internal SCAO system that will be complementary to it and will deliver a high performance on axis correction, suitable for coronagraphic and pupil masking applications. The basis of the pupil masking approach is to ensure the stability of the optical transfer function, even in the case of residual errors after AO correction (due to non common path errors and quasi-static aberrations). Preliminary designs of pupil masks are presented. Trade-offs and technical choices, especially regarding redundancy and pupil tracking, are explained.Comment: SPIE 2014 Proceeding -- Montrea
    corecore