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ABSTRACT 

Transition metal complexes with π-allylic ligands remain an attractive topic in organometallic 

chemistry, given the numerous reports of a wide variety of synthetic routes, dynamic behaviour 

and reactivity, structural (including isomerism), spectroscopic and redox properties, and 

applications in organic synthesis and catalysis. Surprisingly, despite the considerable interest 

in the rich and varied chemistry of this family of organometallic compounds, there is no recent 

review. This review is focused on π-allylic representatives of low-cost Group-6 metals bearing 

one or more carbonyl ligand, the coordination sphere being complemented with η5-

cyclopentadienyl (Section 2), chelating ligands, including redox active α-diimines and various 

complementary diphosphine (Section 3) and novel anionic amidinate or pyrazolate (Section 4) 

ligands. In Section 1 particular attention is paid to rearrangements of the π-allylic ligand, 

namely exo and endo isomerism, interconversion mechanisms, fluxionality, and agostic 

interactions. In addition, the application of multinuclear NMR spectroscopy to the elucidation 

of such isomerism, and the effect of the metal centre oxidation state on the bonding, dynamic 

behaviour and reactivity of the π-allylic ligand are described. The detailed mechanistic 

description of the synthetic routes and dynamic behaviour of selected representatives of α-

diimine complexes in Section 2 is followed by a description of the [M(CO)2(η
3-allyl-H,R)(α-

diimine)]0/+ fragment as a convenient scaffold for diverse monodentate ligands participating in 

a range of substitution, insertion, intramolecular migration and C‒C coupling reactions - 

frequently involving also the π-allylic ligand, such as allylic alkylation. Special attention is 

devoted to selected examples of redox and acid-base reactivity of the α-diimine complexes with 

emphasis on prospects in electrocatalysis. The amidinate (and related pyrazolate) ligands 

treated in Section 4 may directly replace the π-allylic ligand in some cyclopentadienyl 

complexes (Section 2) or the α-diimine ligand in some dicarbonyl π-allylic complexes (Section 

3). The brief description of their synthetic routes is complemented by intriguing examples of 
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fluxionality and characteristic reactivity encountered for these unusual four-electron donor 

ligands.  
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1. Introduction 

 The M(CO)2(η3-allyl) moiety has been extensively explored in the organometallic chemistry of 

Group 6 metals since the advent of this family of complexes in the 1960s. [1] A considerable variety of 

stable 18 valence electron complexes may be furnished by installation of monodentate, chelating or π-

bound neutral (L) and anionic (X) ligands that constitute the complementary L2X component (or L3 in 

the case of cationic analogues); the composition of which prescribes the structure of this review. The 

cyclopentadienyl (Cp) ligand, η5-bound to the metal centre, is perhaps the most fundamental unit in this 

context, and complexes [CpM(CO)2(η3-allyl)], along with derivatives thereof, are the topic of Section 

2. Whereas throughout this realm of Group 6 organometallic chemistry, complexes of molybdenum and 

tungsten comprise the large majority, the small number of cyclopentadienylchromium allyl compounds 

exhibit novel chemical properties, including the formation of thermally stable 17 valence electron 

Cr(III) species (Section 2.4). Cationic allylmolybdenum and tungsten complexes [CpM(CO)(NO)(η3-

allyl)]+ are subject to nucleophilic attack at the allyl ligand; the regio- and stereochemical- outcome 

being controlled by an ubiquitous fluxional interconversion of isomers (Section 2.2). 

The construction of the L2X component from chelating ligands L⏜L, typically bound to the 

metal centre through nitrogen or phosphorus donor atoms, and monodentate anionic ligands X, is a 

widespread feature amongst Group 6 allyl carbonyl complexes. A treatment of these complexes, 

generalised as [M(CO)2(η3-allyl)(L⏜L)X], is provided in Section 3, accompanied by relevant examples 

that manifest alternative chelate motifs and donor atoms, as well as cationic complexes coordinated by  
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neutral donors L in place of the anionic ligands. The variety within this family of complexes is 

accompanied by complex isomerism, which is acutely influenced by the composition of the 

coordination sphere (i.e., the steric and electronic structure of the ligands that constitute the L2X 

component), and further diversified by various substitution motifs borne by the allyl ligand. An 

additional complexity arises from discrete dynamic processes operant in solution, which interconvert 

the various isomers. A comprehensive discussion surrounding this isomerism is raised in Section 3, and 

continued in Section 4 in the context of amidinato complexes. Herein, the consolidation of data 

pertaining to the solid state and solution-based isomerism of these complexes, and the surrounding 

discussion, is designed to provide some insight into the effect of various ligands and their substituents, 

such that ligand optimisation may be approached in a more pragmatic manner to promote the desired 

dynamic behaviour and subsequent reactivity. 

Section 4 is devoted to pyrazolate and amidinate ligands, the latter more pertinently belonging 

to a family of ligands with a heteroatomic allylic backbone. Whilst amidinate ligands are closer 

neighbours to the chelating L⏜L ligands introduced in Section 3, azaallyl and silaallyl ligands mimic 

the η3-coordination mode of the unadorned allyl ligand, serving as direct replacements thereto. However 

the alternative bonding properties induced by the presence of the heteroatom(s) within the allylic 

backbone give rise to unique reactivity with novel intermediate species.  

The various organometallic complexes explored herein are readily characterised by a range of 

analytical techniques that are frequently alluded to throughout the entirety of this text. Infrared 

spectroscopic measurements are routine in this realm, since the almost invariably present cis-dicarbonyl 

moiety engenders two distinct ν(CO) absorption bands, which may be conveniently tracked by IR 

spectro-electrochemical techniques to study the redox behaviour of electroactive compounds. [2,3] 

NMR spectroscopy, including variable-temperature and multinuclear studies (pertinently 91Mo and 

183W nuclei; Section 2.3), provides an invaluable means for the characterisation of structure and 

dynamic behaviour.  

Amongst the various classes of Group 6 allyl carbonyl complexes, there are many examples 

displaying, or promising, catalytic activity; and the aforementioned fluxional phenomena have 



5 

 

important consequences on the regio- and stereochemical course of the elementary reactions that 

constitute a given catalytic process. While many catalytic applications, such as allylic alkylations 

(Section 3.3) have been known for some time, mechanistic features still remain to be elucidated in order 

to pragmatically optimise the process. Contemporary interest in complexes containing the M(CO)2(η3-

allyl) fragment as a generality is in their suitability as precursors for catalytic olefin epoxidation. This 

topic is not explored in detail within this text, since it has only recently received a thorough treatment 

elsewhere. [4] Largely in its infancy, the pursuit of redox-active α-diimine complexes [M(CO)3(η3-

allyl)(α-diimine)X] as electrocatalysts for the reduction of carbon dioxide to carbon monoxide and 

potentially other useful species is particularly attractive, and stems from the moderate success of Group 

6 tetracarbonyl α-diimine complexes, as well as their Group-7 (Mn, Re) counterparts (Section 3.4).  

Finally, whereas the ligation of carbonyl ligands and π-allyl moieties amongst these formally 

M(II) complexes suggests a character commensurate with late transition metal organometallic 

compounds, a surprising oxophilicity and general affinity for ‘hard Lewis donor’ atoms is frequently 

demonstrated in various reaction mechanisms, which is the case even for low-valent complexes of 

molybdenum and tungsten (Section 3.3). Such an intermediate behaviour offers unique strategies for 

the activation of small molecules and subsequent regio- and stereoselective transformations, and 

suggests catalytic applications for these abundant and relatively low-cost metals. 

 

 

2. Complexes [CpM(CO)2(η3-allyl)] and related compounds 

2.1. Synthetic strategies 

The synthesis of the complex [CpMo(CO)2(η3-C3H5)] (Cp = η5-C5H5; 3) (Scheme 1) reported 

in 1963 by Cousins and Green [1] employed the anionic piano stool precursor  [CpMo(CO)3]‒  (1) as its 

sodium salt. When added slowly to excess allyl chloride, the σ-allyl complex [Cp(Mo)(CO)3(η1-C3H5)] 

(2) is prepared via oxidative addition. UV irradiation then furnishes the π-allyl complex via 

photochemical dissociation of one of the carbonyl ligands. The tungsten analogue, [CpW(CO)2(η3-
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C3H5)] (4) has been similarly obtained. [5,6] An improved synthesis (Scheme 2) requiring just two steps 

from the readily available hexacarbonyl precursor 5 was reported by Hayter in 1968. [7] The product 

of oxidative addition with allyl chloride, [Mo(CO)2(MeCN)2(η3-C3H5)Cl] (6), typifies a precursor to 

another family of allyl carbonyl compounds of interest; a treatment of these complexes is presented in 

Section 3. The acetonitrile ligands are readily displaced along with the halide from intermediate 6, upon 

treatment with a solution of lithium cyclopentadienide in tetrahydrofuran, introducing the Cp moiety as 

a ligand. This synthetic route has been employed for analogues of intermediate 6, including, but not 

limited to, [M(CO)2(MeCN)2(η3-allyl)X] (M = Mo, W; allyl = C3H5, C3H4Me, C3H4Cl, C6H9; X = Cl, 

Br, NCS). However, this method only appears to be applicable to compounds of molybdenum and 

tungsten, [7–9] and no π-allyl complexes of chromium have been prepared from [Cr(CO)3(MeCN)3] 

(7), using this strategy. The latter complex itself is far less stable than the molybdenum and tungsten 

tris(acetonitrile) tricarbonyl analogues. [10] 

 

 

Scheme 1. 

 

 

Scheme 2. 
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A general trend amongst the Group-6 allyl carbonyls is, indeed, that the chromium analogues 

are significantly more challenging to prepare, with the resultant η3-allyl products being often less stable. 

[11–16] However, recently a modification to the method shown in Scheme 2 provided a synthetic 

strategy for a variety of chromium analogues of 3 (Scheme 3). [8] Tris(acetonitrile) complex 7 

undergoes oxidative addition to allyl bromide in acetonitrile, forming the intermediate 

[Cr(CO)2(MeCN)2(η3-C3H5)Br] (8), which is analogous to 6 in Scheme 2. Intermediate 8 is temperature-

sensitive; warming up the reaction mixture prior to the addition of NaCp yields intractable 

decomposition products. Appropriate choice of reagents affords a wide range of compounds 9a-e, some 

of which are shown in Scheme 3. However, the reaction does not proceed with allyl chlorides, 

presumably on account of the stronger C‒Cl bond which resists the oxidative addition step. The 

relatively low yield of 9d is perhaps attributable to the necessity of oxidative addition at a secondary 

carbon (Section 3.2). 

 

 

Scheme 3. Synthetic route to [CpCr(CO)2(η3-C3H5)] 9a; derivatives 9b-e may also be prepared with an 

appropriate choice of reagents. [8] 

 

The foregoing comments suggest that perhaps the smaller size of the chromium centre in 

comparison to that of molybdenum and tungsten for a given oxidation state, and the subsequent steric 

shielding imposed by the ligands, are at least in part responsible for the rather diminished reactivity of 

various chromium precursors towards oxidative addition to an allylic substrate. [12] As expected,  
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cyclopentadienylchromium allyls generally have shorter M–Callyl distances compared to molybdenum 

and tungsten analogues. [17]  On this assumption, one might discount an SN2′-type mechanism of 

chromium precursor 7 on the allylic substrate, since the yields are similar for 9a-c where oxidative 

addition to a primary carbon is a common feature – yet the same synthetic route to 9d affords a 

comparatively low conversion. The details of the mechanism by which the oxidative addition to allylic 

substrates occurs have not yet been fully elucidated, and it is postulated that in fact differing 

mechanisms are applicable amongst the variety of complexes of topic throughout this review, see 

Section 3.2.  

The indenyl ligand in 9e warrants some further discussion, since it exhibits a lower energetic 

barrier to the η5 → η3 haptotropic rearrangement in comparison to that of the cyclopentadienyl ligand. 

[18,19] This feature, born of the tendency of the fused benzene ring to maintain aromaticity, provides 

a means by which the indenyl moiety can be installed as an allylic ligand itself. The molybdenum 

analogue of 9e serves as a precursor in a novel synthetic route to such compounds (Scheme 4). 

Treatment of [Mo(CO)2(η5-indenyl)(η3-allyl)] (10), prepared via the corresponding method to that 

shown in Scheme 3, with HCl gas yields chloride-bridged dimer 11. Incorporation of the 

cyclopentadienyl moiety induces a haptotropic shift of the η5-coordinated indenyl ligand to furnish η3-

indenyl complex 12. The reaction is reported to also be successful for methyl-functionalised indenyl 

moieties 2-MeC9H6 and 4,7-Me2-C9H5. [20] 

 

 

Scheme 4. Synthetic route to [CpMo(CO)2(η3-indenyl)] (12); this reaction is also suited for various substituted 

indenyl derivatives. [20] 
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2.2. Exo ⇌ endo isomerism 

 The tendency of [CpM(CO)2(η3-allyl)] (M = Cr, Mo, W) to form exo or endo isomers A and B 

(Chart 1) with regard to the arrangement of the allylic moiety, is a distinguishing feature of this family 

of complexes. The preference towards one rotameric conformation of the allyl ligand and the energetic 

barrier for interconversion between the two isomers, are seemingly a function of numerous steric and 

electronic variables. This phenomenon was first characterised on account of [CpMo(CO)2(η3-C3H5)] (3) 

solutions exhibiting four IR ν(CO) absorption bands, initially misidentified as the presence of cis and 

trans isomers; [21] the latter suggestion was later disregarded on account of steric unfeasibility, 

supported by the appearance two pairs of ν(CO) bands at very similar wavenumbers. [22] Indeed, such 

a similarity in wavenumber often leads to the observation of just two ν(CO) bands for compounds of 

this type, attributed to line broadening as a result of solvent effects. [23] Variable-temperature 1H NMR 

studies further rationalised the presence of the exo and endo isomers and their interconversion in the 

solution. [22,24] The proton resonances pertaining to the allyl moiety do not collapse to an A4X motif 

in the spectrum on increasing the temperature, which is characteristic of a haptotropic interconversion 

through a σ-allyl intermediate; [25] rapid internal rotation of the η1-allyl intermediate during the 

haptotropic rearrangement interconverts the syn and anti protons in the latter process. Instead, at low 

temperature, where the interconversion between exo and endo rotamers is sufficiently slow on the NMR 

timescale, the 1H NMR spectrum of 3 (Figure 1) features two η5-cyclopentadienyl resonances and two 

sets of superimposed allylic AM2X2 spectra consistent with 3-A and 3-B. On increasing the temperature, 

the rotameric interconversion becomes rapid on the NMR timescale; the peaks belonging to each of the 

conformations then coalesce and produce a weighted-average A2M2X spectrum. Since the syn and anti 

protons are shown not to interconvert, a η3 → η1 → η3 mechanism to the rearrangement may be 

dismissed. [23,24] Instead, a η3 → η3 → η3 mechanism is applicable (vide infra). Here, the complex 

[CpMo(CO)2(η3-C3H5)] (3) behaves differently to analogous compounds of Group-8 metals 

[CpM(CO)(η3-C3H5)] (M = Fe, Ru), which have been shown to interconvert between exo and endo 

conformations via the aforementioned η3 → η1 → η3 mechanism. [26,27] A rationale for this observation 

was not offered until much later, whereby DFT calculations showed that the additional d-electron count 
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of 2 in complexes of Fe and Ru occupies a high-lying orbital of a metal‒Cp antibonding character in 

the transition state, pertaining to a half-rotated gauche arrangement of the allyl ligand (Figure 2b). [28] 

This renders the energy barrier to the η3 → η3 → η3 interconversion of [CpRu(CO)(η3-C3H5)] some 108 

kJ mol-1 higher than that of [CpMo(CO)2(η3-C3H5)] (Figure 2a). Another possible mechanistic pathway 

was also considered, which resembles a ‘ring-flip’, proceeding via a metallacyclobutane-type transition 

state where the allyl moiety is κ2-bound. This transition state was calculated to be too high in energy 

due to both the conformational strain of the four membered metallacycle, and a lifting of the metal‒

allyl Ψ3 retrodative bonding; indeed, this mechanism would also stipulate the interconversion of syn 

and anti substituents at the allylic termini. Instead, the mechanism delineated in Figure 2 is applicable 

for complexes [CpM(CO)2(η3-allyl)], whereby the allylic ligand rotates in a plane normal to the metal‒

ligand axis. The barrier to the η3 → η3 → η3 interconversion for 3 has been estimated from variable-

temperature NMR studies to reach ca. 51 kJ mol-1, [24] which is comparable to the calculated energy 

barrier shown in Figure 2. 

 

 

Chart 1. The exo A and endo B rotameric forms adopted by complexes [CpM(CO)2(η3-allyl)] (M = Cr, Mo, W), 

and various derivatives thereof. 
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Figure 1. Variable-temperature 1H NMR spectra of 3 recorded at 60 MHz (ppm upfield from the benzene 

reference standard). The low-temperature spectra (left) were recorded in chloroform-d3.  Due to decomposition at 

T > 50 °C in chlorinated solvents, benzene-d6 was used to record spectra in the temperature range of 40-130 °C 

(right). Adapted from [22]. 
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Figure 2. a) Energy profile and b) orbital correlation diagrams for the η3 (exo) → η3 (gauche) → η3 (endo) 

interconversions of complexes [CpRu(CO)(η3-C3H5)] and [CpMo(CO)2(η3-C3H5)], adapted from [28]. The 

relative energies of the conformations, as afforded from the DFT calculations, are labelled on the energy profile 

diagrams. Illustrations of some of the representative orbitals are shown in Figure 3. 

 

 A discussion regarding the relative stabilities of the exo and endo conformers warrants both 

steric and electronic rationale. For complexes [CpM(CO)2(η3-allyl)] (M = Mo, W; allyl = C3H5, 

C3H4Me), computational studies have evaluated the energies of the two rotamers from an electronic 

viewpoint. [29–31] There is a general consensus that the energies of the exo and endo conformers are 

very similar, and the stabilities of the rotamers are governed by many factors, e.g., ligand substitution 

patterns. For example, gaseous [CpMo(CO)2(η3-C3H5)] isolated in an argon matrix exhibits the two 

conformers, 3-A and 3-B, present in nearly equal quantities, [30] certainly pointing to a very small 

energetic difference between them, which is also supported by DFT calculations [28,30,31] (see also 

Figure 2). The relevant MOs for [CpM(CO)2(η3-C3H5)] are shown in Figure 3. The exo form of 
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[CpMo(CO)2(η3-C3H5)] (3-A) has been reported to be of a slightly lower energy; this is attributed to the 

presence of the carbonyl ligands, since the complex [CpMo(PH3)2(η3-C3H5)] has been shown to favour 

the endo conformer. [31] With regards to the allyl ligand alone, the endo isomer is intrinsically 

preferred, since the principal metal-allyl bonding interaction (HOMO-2; Figure 3) constructed from the 

Ψ2 non-bonding orbital of the allyl moiety and the CpMoL2 fragment orbital of appropriate symmetry 

(predominantly 4dxy in character) is weakened in the exo conformation. However, this penalty is more 

than compensated by the strengthened bonding interaction with the carbonyl ligands in the exo form on 

account of their π-accepting character; the strongly π-acidic nature of the carbonyl ligands also 

competes with the Ψ3 orbital of the allyl ligand for electron density from the 4dx2-y2 orbital in the 

HOMO-1, which destabilises the endo isomer. [31] 

 

 



14 

 

Figure 3. Illustrations of the pertinent molecular orbitals in [CpM(CO)2(η3-C3H5)], derived from refs [28,32]. 

 

The energies of the exo and endo rotameric forms are also highly sensitive to solvent effects. 

More polar solvents promote the exo form as the prevailing conformer present in solution; exo/endo 

ratios manifested by 3 in pentane, benzene and CH2Cl2 have been reported as 1.7:1, 3:1 and 4:1, 

respectively. [30,33] Subsequent DFT calculations confirmed that the stronger dipole moment of the 

exo form is responsible for this behaviour. [30] As one might expect, steric effects within the 

coordination sphere also have some bearing on the prevalence of each isomer; for example methyl-

substitution of the allyl ligand at the meso carbon in the complex [CpMo(CO)2(η3-2-Me-allyl)] renders 

the endo rotameric form more stable than the exo conformer, [31,33] which is present in 11-fold excess 

in acetone. [34] This reversed isomeric preference is also followed by other complexes which bear 

substituents at the meso carbon of the allyl ligand [35–38] (vide infra), and presumably this arises as a 

result of the steric impedance between the 2-methylallyl and Cp ligands. Curiously, chromium 

congeners [CpCr(CO)2(η3-allyl)] 9a-e (Scheme 3) are reported to exist exclusively in the exo 

configuration, and the 2-methylallyl derivative [CpCr(CO)2(η3-2-Me-allyl)] exhibits an approximately 

1.9:1 endo/exo mixture. [8] The exo isomer can be selectively crystallised from pentane and thus 

separated from the endo isomer; supporting the conjecture that the exo conformation is more polar. In 

all reported cases, the chromium complexes are disposed more heavily towards the exo isomer, however 

the scarcity of information in the literature and the lack of clues in their X-ray crystallographic structures 

offer little satisfactory reasoning for this phenomenon. 

2.3. 95Mo and 183W NMR spectroscopy 

95Mo NMR is useful for the identification of the exo and endo rotameric forms of 

[CpMo(CO)2(η3-allyl)] (3-A and 3-B; as well as derivatives thereof) from the preceding section, and 

ascertain their relative stabilities. The 95Mo nucleus (I = 5/2) features a non-trivial quadrupolar moment 

and thus broad lines are expected for low-symmetry complexes such as [CpMo(CO)2(η3-C3H5)]. 

However, if the examination of the fine signal structure is not an objective, 95Mo NMR chemical shifts 
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are highly sensitive to coordination environment, and hence useful for characterisation. They typically 

cover a broad chemical shift range of ca. 4000 ppm. [39,40] These chemical shifts of heavier nuclei, 

which are typically spread over a vast range, are often difficult to rationalise based on the electronic 

environment and inductive effects, as is readily achieved in 1H NMR. This is due to a dominant 

contribution from the paramagnetic shielding term σpara to the total shielding tensor, and a generally 

negligible contribution from the diamagnetic term σdia. The parameters of the component σpara are 

delineated by the Ramsey equation, [41] which has undergone numerous adaptations and 

simplifications to isolate the most pertinent variables; a heuristic form of the Ramsey equation [42,43] 

is presented in Equation (1): 

𝜎para ∝ −∆𝐸−1 ∙ 〈𝑟−3〉d𝐷u  (1) 

A larger (negative) paramagnetic term deshields the nucleus, resulting in a downfield shift. ∆E 

generally refers to the HOMO-LUMO gap in the complex of interest, which has an inverse relationship 

with σpara; a small energy gap between the HOMO and the LUMO will result in a stronger downfield 

shift. For 95Mo, the term 〈𝑟−3〉d represents the 4d orbital expansion term, which refers to the expectation 

value for the 4d electrons, and Du is the imbalance of electron population. The parameters contained 

within Equation (1) are difficult to evaluate individually, and, indeed, may not be entirely independent 

of one another; the often-antithetical chemical shift trends of heavier nuclei are hence more difficult to 

quantify and rationalise. However, empirical trends can be identified and often correlated with useful 

properties within a family of complexes; interpretations based on the nephelauxetic effect of ligands 

and the energy gap ∆E are readily ascribed. [44–48] For illustrative data for [CpMo(CO)2(η3-allyl)] (3) 

and derivatives, see Table 1. The 95Mo chemical shift range for the observed resonances is -1521 to -

1833 ppm; [34] signals pertaining to the exo and endo conformations are adequately separated, with the 

endo form invariably appearing further downfield, allowing clear rotamer identification (Figure 4). The 

relative intensities of the two resonances can then be used to ascertain the prevailing isomer; assignment 

is aided by a comprehensive study using 1H NMR methods. [49]  The shifts shown in Table 1 reveal  

allyl-substitution patterns.   As mention earlier, (Section 2.1), substitution at the meso carbon favours 

the endo rotameric form, as exemplified by the low percentage of the exo isomer present in solution for 
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2-chloro-, 2-bromo- and 2-methyl- derivatives. The absence of a η3 → η1 → η3 haptotropic shift of the 

allylic ligand in these complexes prohibits the interchange of syn and anti substituents on the terminal 

carbons. 1-Methyl- and 1,3-dimethyl- substitution almost exclusively adopts syn and syn,syn motifs, 

respectively, (as determined via 3JHH coupling constants in the allyl ligand), [49] and the excess of the 

exo conformer present for these complexes in solution is very similar to that of the unsubstituted allyl 

compound. When an anti methyl substituent is introduced, a very strong preference for the exo isomer 

is shown, which clearly surpasses the endo preference induced by meso substitution, as demonstrated 

by the 95% exo composition of the 1,1,2-trimethyl-allyl complex.  This arises from steric hindrance 

between anti allyl-substituents, and the cyclopentadienyl group of the endo-isomer.  Generally, there is 

a downfield shift of the exo isomer resonance on increased substitution of the allylic ligand. The 

decreasing shielding of the 95Mo nucleus is shown in Table 1 as allyl > 1-methyl > 1,3-dimethyl > 1,1-

dimethyl > 1,1,2-trimethyl. This tendency for more highly substituted allylic ligands to deshield the 

metal nucleus is also seen for cationic complexes derived from [Fe(CO)4(η3-allyl)]+ subject to 57Fe 

NMR studies (Figure 5). [50,51] Curiously, this pattern is not realised amongst the endo chemical shifts. 

However, it appears that a greater preference for the exo conformation amongst the aforementioned 

allylic ligands correlates somewhat with a stronger downfield shift of the endo resonance, indicating 

that perhaps the molecular structure undergoes other subtle steric adjustments that are amplified with 

increasing predisposition for the exo arrangement. 

 

Table 1. 95Mo chemical shifts for complexes based on [CpMo(CO)2(η3-allyl)] with varying allylic ligand 

substituents. [34] 

  δ /ppma 

η3-Allylic ligand % exob exo endo 

allyl 80 -1832 -1658 

1-methylallyl 88 -1789 -1600 

1,3-dimethylallyl 80 -1752 -1709 

1,1-dimethylallyl 100 -1688 — 

1,1,2-trimethylallyl 95 -1657 -1448 

2-chloroallyl 6.3 -1709 -1521 
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2-bromoallyl 7.4 -1744 -1540 

2-methylallyl 8.3 -1752 -1573 

aRelative to the external standard of Na2[MoO4]; all samples recorded in acetone-d6 at 303 K and 32.59 MHz. 
bThe percentage of the exo conformation in solution, calculated from the relative intensities of the exo and endo 

resonances in the 95Mo NMR spectrum. 

 

 

Figure 4. 95Mo NMR spectrum of [(Me-Cp)Mo(CO)2(η3-C3H5)] (14; see Chart 2) displaying well-resolved 

resonances belonging to exo and endo isomers; adapted from [32]. 

 

 

Figure 5. 57Fe NMR chemical shifts for cationic allyl compounds of type [Fe(CO)4(η3-allyl)][BF4]. [50] 

In Table 1, the meso substituted allylic ligands are separated on account of their inverse 

isomeric preference. The chemical shifts for both the exo and endo isomers correlate well with the 

prevalence of the former in solution. The contribution of the exo isomer rises as 2-chloro < 2-bromo < 

2-methyl, being accompanied by  increased shielding at the 95Mo nucleus.  An explanation for this is 

not obvious, but steric, electronic, and solvent effects may all contribute. Interestingly, preceding 1H 

NMR studies of the same allylic ligands ascertained the order of increasing exo concentration to be 2-
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methyl < 2-chloro < 2-bromo, but the NMR experiments were performed in different solvents (Table 

2), [49] which might alter the relative concentrations between the two isomeric forms (vide supra). 

Further complications may stem from the fact that the substitution at the allyl ligand with 

electronegative groups will necessarily adjust the polarity of the molecule. Here, the challenge of 

separating and quantifying the electronic and steric properties of a particular complex to rationalise the 

adopted exo/endo isomeric preference.   Similarly, isolating the contributions to the paramagnetic term 

(Equation 1) is difficult; although, several computational studies have been used to distinguish the 

contributions, [52–54] However, the aforementioned correspondence observed between the exo/endo 

ratios and chemical shifts highlights the utility of NMR  in establishing empirical correlations between 

chemical shifts of NMR-active transition metal nuclei, and the dynamic behaviour, chemical reactivity 

and even catalytic activity of their organometallic complexes. As a particularly interesting example, 

catalytic efficacy of complexes [(η5-R‒Cp)Co(COD)] (COD = 1,6-cyclooctadiene, R‒Cp = 

monosubstituted cyclopentadienyl) with regards to the cyclotrimerisation of acetylenes and nitriles has 

been shown to correlate with their respective 59Co chemical shifts. [51,55] 95Mo (and 183W) NMR 

studies  are promising for the characterisation of catalytic applications.     

 

Table 2. Percentages of exo isomer presented for 2-substituted allylic ligands (L) in [CpMo(CO)2(η3-L)] in 

different solvents, as ascertained by 1H and 95Mo NMR studies. 

 1H NMRa 
 

95Mo NMRb 

Allylic ligand % exo Solvent Temp.c  % exo Solvent Temp. 

2-chloroallyl 14 CDCl3 5 °C  6.3 acetone 30 °C 

2-bromoallyl 17 C6H6 0 °C  7.4 acetone 30 °C 

2-methylallyl 11 CDCl3 0 °C  8.3 acetone 30 °C 

a Percentage of the exo isomer present in the solution, as ascertained from the relative intensities of resonances 

belonging to the exo and endo isomers. [49] 
b From [34], also listed in Table 1. 
c Recorded at lower temperatures to avoid line broadening of the 1H resonances caused by rapid interconversion 

between the two rotameric forms. It is worth noting that the exo/endo isomerism is temperature-dependent. [32] 

 

At present, 95Mo NMR studies of allyl carbonyl complexes are relatively scarce in the literature.  
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Recently, however, 95Mo chemical shifts were collected for a number of allyl molybdenum complexes 

of the type [(η5-Cpʹ)Mo(CO)2(η3-C3H5)] (Cpʹ = C5H5, substituted cyclopentadienyl, indenyl, fluorenyl; 

13-19) (Chart 2), to study the effect of substitution at the η5-cyclopentadienyl-type ligand. [32] Also 

communicated in this study are corresponding electroanalytical, photoelectron, IR, and 13C NMR 

spectroscopic, and DFT computational investigations; a wide range of techniques for these complexes, 

, including the tungsten analogues of 13, 15 and 16. 95Mo chemical shifts for the exo and endo isomers 

in this series of complexes are presented in Table 3, and clear trends may be observed amongst the 

different substitution patterns of the η5-coordinated moieties. Increasing the substitution at the Cpʹ 

ligand with inductively donating methyl substituents reliably deshields the 95Mo nucleus; an apparently 

counterintuitive phenomenon that exemplifies the negligible contribution from the diamagnetic 

shielding term σdia in comparison to σpara in chemical shifts of nuclei other than 1H. [41] The decreased 

shielding of 95Mo nucleus in the order Cp > Me‒Cp > Me5‒Cp for cyclopentadienyl complexes and Ind 

> Me‒Ind > Me2‒Ind for indenyl complexes finds a remarkable correlation with their calculated 

HOMO-LUMO energy differences ΔE, as listed in Table 3. Figure 6 demonstrates an inverse linear 

relationship between the two variables, implying that the ΔE-1 component of the paramagnetic shielding 

term (Equation 1) is predominantly responsible for the observed deshielding of the 95Mo nucleus on 

increasing substitution of the Cpʹ ligand. 

 

Chart 2. Complexes 13-19 of type [(η5-Cpʹ)Mo(CO)2(η3-C3H5)], with varying η5-coordinated moieties. 
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Table 3. 95Mo chemical shifts for compounds of type [(η5-Cpʹ)Mo(CO)2(η3-C3H5)]. [32] 

  δ /ppmb  

Compounda  exo endo ΔEc 

[CpMo(CO)2(η3-C3H5)] 13 -1822 -1646 0.15943 

[(Me‒Cp)Mo(CO)2(η3-C3H5)] 14 -1804 -1625 0.15926 

[(Me5‒Cp)Mo(CO)2(η3-C3H5)] 15 -1699 -1518 0.15754 

     

[(Ind)Mo(CO)2(η3-C3H5)] 16 -1742 -1556 0.14626 

[(Me‒Ind)Mo(CO)2(η3-C3H5)] 17 -1708 -1518 0.14549 

[(Me2‒Ind)Mo(CO)2(η3-C3H5)] 18 -1675 -1485 0.14478 

     

[(Flu)Mo(CO)2(η3-C3H5)] 19 -1543 — 0.14258 

a Abbreviations as follows: Me‒Cp = methylcyclopentadienyl; Me5‒Cp = pentamethylcyclopentadienyl; Ind = 

indenyl; Me‒Ind = 1-methylindenyl; Me2‒Ind = 1,3-dimethylindenyl; Flu = fluorenyl. 
b Relative to the external standard of Na2[MoO4]; the solvent was CHCl3/CDCl3 [10:1] for all complexes apart 

from 13, which was measured in CD2Cl2 solution. Spectra were obtained on a Bruker ARX 400 at 26.08 MHz. 
cHOMO-LUMO energy gap, as calculated with DFT, in arbitrary units (au). 

 

 

Figure 6. Plotted data [32] [demonstrating the correlation between the 95Mo chemical shifts and the increasing 

HOMO-LUMO energy gap of the substituted cyclopentadienyl complexes 13-15 (a) and indenyl complexes 16-

18 (b). The blue trend lines pertain to the endo isomers, and the red trend lines to the exo isomers. 

 

The explanation put forward for the decreased HOMO-LUMO gap in more substituted 
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complexes is that the more strongly donating substituted Cpʹ ligands destabilise the HOMO more 

effectively than the LUMO, thus decreasing the energy gap between them. With regard to the metal-

centred orbitals, the HOMO adopts predominantly Mo 4dz2 character, which is the primary metal orbital 

involved in the π-back-donation into carbonyl π* orbitals (Figure 3). Destabilisation of the HOMO 

hence markedly promotes π-back-bonding, and accordingly, decreasing carbonyl IR stretching 

frequencies which correlate well with the downfield 95Mo chemical shifts. [32] The σ interaction 

between the Cp′ ligand a1 and metal dz2 orbitals is known to be weak as they are far apart in energy 

(indeed as illustrated in Figure 3, the Cp′ a1 orbital does not evidently contribute to the HOMO); it 

might then be anticipated that the increased coefficient of the a1 orbital, due to iterative methyl 

substitution, is therefore unlikely to perturb the HOMO significantly. The lowest energy virtual orbitals, 

of which there are three close in energy (Figure 2), are constructed from the π interactions between Cp′ 

orbitals and  the appropriate Mo 4d orbitals; Figure 3 illustrates the LUMO and LUMO +1, involving 

mainly the Cp e2 degenerate pair (although mixing with Cp e1 orbitals is apparent), and Mo 4dyz and 

4dxz, respectively. With consideration of the more marked contribution of the Cp-based π orbitals to the 

LUMO in contrast to the HOMO, it is perhaps then counterintuitive that iterative methylation of the Cp 

ring should serve to reduce the HOMO-LUMO gap in such a way. A parallel deshielding effect upon 

the increased substitution of a cyclic π-system is also observed amongst complexes [(η6-

arene)Mo(CO)3], [56,57] and of particular note, the deshielding of the 95Mo nucleus upon advancing 

methylation of the allyl ligand (vide supra) is also in accordance with the above observations. 

Photoelectron spectra collected for 13 and 15 provide some insight into the shift in energy of 

occupied orbitals upon permethylation of the Cp ligand (Figure 7). [32] Here, the HOMO is indeed 

raised in energy, though less than the HOMO-3 and HOMO-4 on account of their predominant Cp e1 

orbital character. The occupied orbitals for the related N-tBu-azaallyl complex 20 also undergo a 

comparable shift to higher energies on permethylation to the Me5-Cp congener 21 (Figure 7); in 

particular, the observed increase in energy of the HOMO between 20 and 21 is very similar to that 

between 13 and 15. Note that the occupied orbital associated primarily with the nitrogen lone pair 

(labelled with an asterisk) does not undergo any appreciable shift in energy, suggesting that it interacts 
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very little with the orbitals centred on the Cp′Mo(CO)2 fragment. Computational studies, however, have 

challenged this conjecture. [58] The difference in orbital energies concerning 13 and 20 (similarly 15 

and 21) are presumably also influenced by a) the endo conformation exclusively adopted by η3-azaallyl 

complexes of this type, [58–64] as opposed to the exo form of 13 and 15, b) the tert-butyl substituent 

on the azaallyl ligand, and c) the modified metal-ligand bonding properties as a consequence of the 

heteroatom incorporated within the allylic backbone. Thus direct comparison  of the orbital for the  η3-

allyl and η3-azallyl complexes is here not appropriate. 

 

 

Figure 7. Photoelectron spectra plotted for Cp and Me5-Cp η3-allyl complexes 13 and 15 [32] (red), and the 

corresponding η3-azaallyl complexes 20 and 21 [58] (blue), demonstrating the effect of permethylation of the Cp 

ring in each case. Assignments of the peaks belonging to the occupied orbitals from the HOMO to the HOMO-4 

are shown, as well as the orbital primarily associated with the nitrogen lone pair in 20 and 21, marked with an 

asterisk. 

 

Indenyl complexes 16-18 exhibit lower-field 95Mo chemical shifts than cyclopentadienyl 

complexes 13-15, with fluorenyl complex 19 featuring the lowest δ at -1543 ppm for the exclusively 

observed exo isomer. This trend is readily ascribed to the lower energy gap ΔE between the HOMO and 

LUMO for the indenyl and fluorenyl complexes; their respective LUMOs will be stabilised by lowering 
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the energy of the Cpʹ π-framework orbitals because of the extended delocalisation offered by the fused 

benzene ring(s). The HOMO, as mentioned earlier, has a low contribution from the Cpʹ ligand orbitals 

and, therefore, is not significantly altered in energy. 

Whereas 95Mo NMR spectroscopy is potentially useful here, the literature on 53Cr NMR is very 

scarce, since the relatively large quadrupolar moment of 53Cr and its low receptivity make it a 

particularly challenging nucleus to probe. [45,56,57,65] However, the differences between the Cr and 

corresponding Mo and W complexes make 53Cr NMR experiments potentially interesting.  

183W is an I = ½  nucleus that exhibits a number of measurement difficulties, on account of its 

low receptivity and long relaxation times. [45,56]  Nonetheless, the sharp spectral lines allow for 

coupling to, e.g., 1H, 13C and 31P to be observed. [66,67] In addition, the chemical shift range for 183W 

signals exceeds 11,000 ppm. [39] A cursory 183W NMR study of related tungsten tris(pyrazolyl)borate 

complexes [TpʹW(CO)2(1-R-η3-allyl)] (Tpʹ= hydrotris(3,5-dimethylpyrazolyl)borate; R = Ph (22), Me 

(23)) (Chart 3) has been reported, [68] in which inverse 2D detection was employed. [69] The generally 

large hyperfine splitting exhibited by 183W in coupling with other nuclei allow the use of long-range 

coupling constants to Tpʹ protons to detect the metal resonance, and coupling to the 183W nucleus is also 

exhibited by the allylic protons (Figure 8). The 183W chemical shifts for the similar compounds 22 and 

23 are -460 and -838 ppm, respectively; showing the wide range for 185W chemical shifts. 

 

 

Chart 3. Complexes 22 and 23, which may be considered as being derived from [CpW(CO)2(η3-allyl)] (4), 

whereby the cyclopentadienyl ligand is replaced by a tris(pyrazolyl)borate derivative (Tpʹ) ligand. [70,71] 
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Figure 8. 1H – 183W correlation for complex 22. 1H at 500 MHz; 183W at 20.8 MHz; CD2Cl2 solution. [68] 

 

2.4. Oxidized cationic complexes - reactivity, fluxionality, structural features 

The reactivity of complexes [CpM(CO)2(η3-allyl)] (M = Cr, Mo, W) towards nitrosonium salts 

exemplifies the unique behaviour of the allylchromium complexes in comparison to molybdenum and 

tungsten congeners. The one-electron oxidation of [CpCr(CO)2(η3-allyl)] 9a,b,d (Scheme 3) with 

nitrosonium hexafluorophosphate produces the formally chromium(III) cationic complexes 24a,b,d, 

without nitrosyl coordination (Scheme 5). To inhibit exposure of the oxidised 17 valence electron 

product to any donor solvent, the oxidation was performed in dimethoxyethane (DME), in which the 

Cr(III) complex is only sparingly soluble and rapidly precipitates pure, and in high yield. [72] Oxidation 

thus occurs without change in ligation, but with structural modification. Because of the strongly 

diminished π-back-donation from the Cr(III) centre to the π*(CO) orbitals, the oxidised congeners are 

readily characterised by significantly higher CO-stretching frequencies in the infrared spectrum (Table 

4).  The metal to allylic-C distances are notably variable in Cr(III) allyls (Scheme 6), showing the 

electronic versatility of that ligand. Specifically, the oxidation of 9a is accompanied by modest 

contraction of the Cr‒C distances from the terminal allyl positions, viz. 2.231(5) and 2.239(5) Å in 9a, 

to 2.220(3) Å in 24a, and concomitant elongation of the bond to the meso carbon, viz. 2.108(4) Å in 9a, 
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to 2.151(4) Å in 24a. This is presumably a manifestation of electronic effects; stabilisation of the 

relevant metal d orbitals reduces their interaction with the Ψ3 LUMO on the allylic ligand, which 

possesses an appreciable coefficient at the meso carbon. The interaction with the Ψ2 HOMO is instead 

strengthened, increasing its electron-donating character on account of the enhanced electrophilicity of 

the Cr(III) centre. The nodal plane of Ψ2 at the central allylic position then accounts for the shorter 

metal‒carbon distances at the termini.  Additionally, the CO‒Cr‒CO plane rotates towards the Cp 

ligand by around 10 deg. (Scheme 6). This geometrical relaxation could be due to some electronic non-

innocence of the PF6
- counterion that is seen in the crystal structure to reside in the cleft formed by the 

roughly square-pyramidal base of the complex.  These changes may reflect, however, increased π-back-

donation into the π*(CO) orbitals (which to some extent counters the aforementioned diminished 

retrodative bonding interaction from the oxidised Cr(III) centre). Whilst η3-allyl and η3-crotyl 

complexes 24a and 24b, respectively, are green to yellow-green, the η3-cyclohexenyl complex 20d are 

orange-red. This difference in the visible electronic absorption, along with the remarkably high 

conversion (96%) to the Cr(III) η3-cyclohexenyl complex, suggest the presence of a different electronic 

structure in 24d. The possibility of an agostic interaction between the 17 valence electron chromium(III) 

centre and one of the hydrogens on the cyclohexenyl moiety was proposed. [72]  

 

 

Scheme 5. Reaction of 9a with NOPF6 to form corresponding Cr(III) complex 24a. The same reaction of allyl-

methylated analogues 9b and 9d yields 24b and 24d, respectively.[72] 
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Table 4. Infrared ν(CO) wavenumbers for the various neutral [8] and cationic [72] allylchromium complexes 9 

and 24 (Schemes 3 and 5), respectively. 

Complexa ν(CO)c /cm-1 Complexb ν(CO)d /cm-1 

9a 
1939 

24a 
2070 

1869 2032 

    

9b 

 

24be 

2065 

1932 2040 

1863 2031 

 2022 

    

9d 
1923 

24d 
2039 

1860 2002 

aNeutral chromium(II) complexes derived from [CpCr(CO)2(η3-allyl)]. 
bCationic chromium(III) complexes derived from [CpCr(CO)2(η3-allyl)][PF6]. 
cRecorded in THF. 
dRecorded as a Nujol mull. 
eFour IR ν(CO) absorptions have been reported for 24b, implying a co-existence of exo and endo isomers. 

 

 

Scheme 6. The structural adjustments observed on oxidation of Cr(II) complex 9a. The Cr(CO)2 plane is tilted 

toward the Cp ligand by 10 deg., and the allylic ligand alters its terminal and central Cr‒C distances. In the crystal 

structure of 24a, the PF6
- counterion is seen to reside in the cleft below the relaxed square-pyramidal base of the 

complex, suggesting some interaction with the Cr(III) metal centre.[72] 

 

The widely-accepted concept of agostic bonding regards it as a 2-electron donor interaction of 

the appropriate σ(C‒H) orbital towards an empty metal-centred orbital, or, equivalently as a 3-centre, 

2-electron M‒H‒C bonding interaction. For dn (n > 0) metal centres, modest back-bonding to the σ*(C‒

H) orbital is also feasible, [73] and the agostic interaction is entirely analogous to an arrested state on 
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the path to intramolecular C‒H bond activation. For more details see refs [73-75], and Chart 4 for a 

relevant example, viz. allylmolybdenum carbonyl complex 25. Notably, a handful of examples is known 

where 15 and 16 valence electron species exhibit clear agostic interactions to modify their valence shell, 

but their 17 valence electron congeners do not. [76,77] However, convincing examples of agostic 

interactions to formally 17 valence electron metal centres are known. Electrochemical studies on dialkyl 

complexes of the bent tungstenocene fragment [Cp2WRR′] [78] implied that peculiar trends in the 

oxidation potentials, which opposed the inductive effects of the alkyl ligands R and R′, result from α-

agostic interactions in the oxidised 17 valence electron cations [Cp2WRRʹ]+ (26 in Chart 4 as the 

dimethyl example). It was thus speculated that a 3-centre, 3-electron W‒H‒C agostic construct would 

moderately stabilise the d1 W(V) cationic species. The idea that agostic interactions are weaker for 17 

than for 16 valence electron compounds is supported by an electrochemical study of [(Ph5-Cp)Rh(1,3-

COD)] (27a) and [(Ph5-Cp)Rh(1,5-COD)] (Chart 4). [79] The first and second oxidation potentials of 

27a exhibit a marked negative shift relative to those of the corresponding 1,5-COD complex, which is 

surprising in view of the conjugation present in the 1,3-COD ligand. Furthermore, the negative shift of 

the second oxidation potential is larger than that of the first oxidation potential. The above observations 

are rationalised by an agostic interaction present only in the 1,3-COD isomer, which strengthens on 

further oxidation of monooxidized 17 valence electron species 27b to the corresponding 16 valence 

electron dication. It may thus be expected that agostic interactions in the allylchromium cations 24 

(Scheme 5), if present, are subtle in character. 
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Chart 4. Some relevant examples, as referred to in the main text, of compounds featuring agostic interactions 

(illustrated with a half arrow): Molybdenum allyl carbonyl complex 25 is reminiscent of tris(pyrazolyl)borate 

tungsten complexes 22 and 23 (Chart 3); here the diethyl bis(pyrazolyl)borate ligand acts formally as a three-

electron donor, but a δ-agostic interaction from one of the ethyl substituents supplements the otherwise 16 valence 

electron metal centre. [80,81] 26 and 27b demonstrate unusual 3-electron agostic interactions with the 17 valence 

electron metal centres; the β-agostic interaction in 27b is accomplished by electrochemical oxidation of 27a, 

which shows a Rh–Hβ distance dβ = 2.53 Å. 

 

Agostic interactions between the chromium centre and a number of the hydrogens at the η3-

cyclohexenyl ligand may be envisaged, as in 24dα, 24dβ and 24dγ shown in Chart 5. Whilst the crystal 

structure of neutral congener 9d reveals that the α-hydrogen is the most proximal, an optimum overlap 

with the appropriate metal orbital may favour interactions of the β- or γ-hydrogens, with sufficient 

approach facilitated by a conformational distortion of the cyclohexenyl ring (Chart 5). The aptitude of 

the η3-cyclohexenyl ligand to undergo fluxional agostic interactions at the β-hydrogens is already well 

proven with the complexes [Mn(CO)3(η3-cyclohexenyl)] (28) and [OsH2(PPh3)2(η3-cyclohexenyl)] 

(29), in which the conformation of the η3-cyclohenenyl ligand distorts significantly from the 

paradigmatic ‘chair’ to bring the agostic β-hydrogens to within 1.860 and 1.913 Å, respectively, of the 

16 valence electron metal centres (Chart 5). [17,82–86] The γ-agostic interaction is uncommon and, to 

our knowledge, not previously reported for the η3-cyclohexenyl ligand. Indeed, some purported 
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examples of γ-agostic M‒H‒C interactions have subsequently been shown to be due to other attractive 

interactions that bring the γ-hydrogen within the vicinity of the metal centre. [87] 

 

 

Chart 5. Selected literature examples demonstrating the aptitude of the cyclohexenyl and 1-methylallyl ligands 

towards agostic interactions. Complexes 28 and 29 are examples where the η3-cyclohexenyl ligand contorts to 

establish an agostic interaction through its Hβ substituents (the behaviour is fluxional). [82–85] Complexes 30 and 

31 show the apparently preferred anti configuration of the 1-methyl substituent in a β-agostic interaction. Also 

illustrated here is neutral cyclohexenylchromium(II) complex 9d with metal-distal hydrogen distances dα, dβ and 

dγ, of 2.848, 3.641 and 3.217 Å, respectively. Structures 24dα 24dβ and 24dγ demonstrate the potential agostic 

interactions with the Cr(III) centre in cationic 24d. 

 

Agostic interactions may also be present in cationic allylchromium complexes 24a,b,d. 

Curiously, the presence of exo and endo rotamers (Section 2.2) is reported for oxidised complex 24b, 

in contrast to the apparently exclusive exo composition of 9b; a stabilisation of the endo isomer of 24b 

is thus assumed. The augmented electrophilicity of the Cr(III) centre here presumably prioritises the 

4dxy ↔ Ψ2 interaction (Figure 3), which is stronger in the endo conformation (Section 2.2), [28] over 

back donation to the carbonyl π* orbitals. However, this bonding picture does not account for the single 

appearance of exo rotamer 24a, which would be subject to very similar, if not the same electronic 

effects. Agostic interactions in 1-methylallyl complexes are demonstrated in Chart 5 by 30 and 31. 

[88,89] Of particular interest is the apparent preference for agostic interactions through the anti methyl 

substituent, which is substantiated by the 1,1-dimethyl-allyl ligand in rhodacarborane complex 31. In 



30 

 

fact, the requirement for the agostic methyl substituent to be anti appears to be ubiquitous, [88–92] and 

cyclohexenyl complexes 28 and 29 are necessarily similar. As mentioned in Section 2.2, the syn/anti 

substitution pattern of the allyl ligand has a significant bearing on the stability of the exo and endo 

isomers of neutral complexes [CpM(CO)2(η3-allyl)], but given the structural rearrangements apparent 

in the oxidised homologues (Scheme 6), the same reasoning may not apply. Nevertheless, it might be 

presumed that for an agostic interaction to exist in either the exo or endo isomer of 24b, an 

interconversion mechanism permitting a syn ⇌ anti exchange at the terminal allylic positions must be 

viable. Scheme 7 illustrates two previously described mechanisms that fulfil this requirement, [93] as 

well as the known exo ⇌ endo interconversion effected by rotation about the metal‒allyl vector (Section 

2.2); the latter mechanism however does not engender syn ⇌ anti exchange of the methyl substituent 

(Scheme 7c). Rearrangement via a π → σ → π (η3 → η1 → η3) haptotropic shift of the allyl moiety is a 

well-established mechanism amongst various η3-allyl metal complexes that may proceed with 

interconversion of the syn and anti substituents via a C–C rotation within the η1-allyl intermediate 

(Scheme 7a). Van Staveren et al. demonstrated theoretically that an η1-allyl intermediate of the related 

complex [Mo(CO)2(κ3-N,N,O-L-his)(η3-allyl)] (his = histidine) was accompanied by an α-agostic 

interaction; although, in this case the η1-allyl intermediate was deemed to be too high in energy. [94] 

However, the unique electronic properties of 24b, and the possibility of establishing an alternative β-

agostic interaction, may facilitate this pathway. It has been established that this haptotropic shift does 

not occur generally in the neutral species [CpM(CO)2(η3-allyl)] (Section 2.2), but very little is known 

about the electronic properties and behaviour of the oxidised homologues. Flipping of the allyl ligand 

through a κ2-bound diyl intermediate, which is analogous to a metallacyclobutane moiety bearing a 

positive or negative charge at the meso carbon, is accompanied by a simultaneous syn ⇌ anti exchange 

at both termini of the allyl ligand (Scheme 7b). This mechanism has only been included as a theoretical 

contribution to the discussion of organometallic allyl fluxionality; its viability is contingent on a weak 

bonding interaction between the metal and the meso carbon, and presumably the capacity of the central 

carbon to accommodate an accumulated charge. The allylic fluxionality is generally not substantiated 

by spectroscopic data (vide infra). It may be disregarded in the case of annelated allylic ligands because 
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of the inherent conformational obstruction to syn ⇌ anti interconversion. This flip mechanism is 

discussed further in Section 3.2.  

 

 

Scheme 7. General mechanisms concerning η3-allyl ligand fluxionality, which stipulate the exo ⇌ endo 

isomerism, as well as interconversion of syn and anti terminal allyl substituents. The three mechanisms are 

illustrated here with [CpM(CO)2(η3-crotyl)] (M = Cr, Mo, W), but only rotation about the M–allyl vector (shown 

in c)), which does not interconvert the syn/anti orientation of the methyl substituent, has thus far been considered 

viable for complexes of this type (Section 2.2). The remaining two mechanisms are delineated by a) π → σ → π 

haptotropic shifts with bond rotation occurring in the η1-bound intermediate, and b) ‘ring-flip’ through a 

metallacyclobutane intermediate. Here, syn ↔ anti interconversion of the methyl substituent is possible (and in 

fact compulsory in b)). Note that in b), hypothetically either a partial positive or negative charge may accrue on 

the dissociated meso carbon. [93] 

 

A characteristic feature of 1-methylallyl complexes 30, 31 exhibiting β-agostic interactions 

(Chart 5) is lengthening of the M–Cmeso distance. [88–92] This is paralleled by meso-C–amino 

substituted allyl complexes 32, which may be seen as adopting a significant metallacyclobutane 

character as a possible manifestation of resonance form 32′ (Chart 6). [95,96] This also parallels the 

observed lengthening of the M‒Cmeso distance in 24 with comparison to 9 (Scheme 6). It would be 

interesting to see if oxidised complexes structurally similar to 32 have clarifying structures, and less 
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positive oxidation potentials because of the mesomeric influence exhibited by the meso-NR2 

substituent. Also, with a sufficient contribution of resonance tautomer 32′ to the bonding picture of a 

cationic species, one might anticipate its potential for a direct nucleophilic attack at the central carbon; 

a phenomenon not observed for complexes of this type (Section 2.5). Indeed, whereas the 

allylchromium cation 24a is reported to maintain the regioselectivity of nucleophilic attack at the 

terminal allylic positions, the reaction is markedly less efficient than the equivalent reaction of  neutral 

congener 9a, [72] despite the positive charge borne by the formally Cr(III) complex. The structural 

rearrangements illustrated in Scheme 6 and the implicit contribution of the resonance tautomer 24a′ 

(Chart 6) provide a tempting explanation for this loss of reactivity at the terminal positions of the allyl 

ligand; such a conjecture merits further investigation. 

 

 

Chart 6. Mesomerically donating allyl meso-C substituents, as in complex 32 bearing an aminyl (NR2; R = Et; R′ 

= C(O)NEt2) substituent, imply the involvement of a resonance tautomer, as illustrated by 32′. Lengthening of the 

M–Cmeso bond in the crystal structures of such complexes substantiates this hypothesis. [95] Also illustrated is a 

proposed analogous tautomerism concerning 24a, which suggests a possible means by which the positive charge 

borne by the formally Cr(III) centre may be delocalised. 

 

It thus follows that substitution at meso carbon of the allylic ligand with a π-conjugated 

electron-withdrawing moiety implicates a contribution from a complementary zwitterionic tautomer, as 

illustrated by the acyl-substituted allyl tungsten complex 33 ↔ 33′ (Chart 7). Whilst in 32′ and 24a′ the 

metal centre formally maintains its oxidation state and valence shell electron count, the tungsten centre 
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in 33′ is formally W(IV) and exhibits a 16 valence electron shell configuration. This offers a rationale 

for the apparently convincing evidence of an α-agostic interaction between the W(IV) centre and the 

anti allylic hydrogen. The crystal structure of 33a shows the distance of 1.590 Å between the tungsten 

centre and the agostic hydrogen (Chart 7). [97] Other similar examples including 34b and 34c may be 

found in the CSD, [17] featuring unusually acute W‒C‒H bond angles at C1 or C3, and appropriate W‒

H distances, [73] though not as markedly as seen in 33. Presumably, there is a preference for the syn or 

anti hydrogens at either C1 or C3 in unsymmetrical allyl ligands, dictated largely by the substituent 

effects or conformational freedom in annelated allyl complexes. Crystallographic data for complexes 

33-35 (Chart 8) show little evidence for either agostic interactions or a contribution from resonance 

form 33′, and no spectroscopic support (by comparison with 36 and 37, see Chart 8). Reported infrared 

data (Table 5) reveal relatively low-frequency ν(C=O)RCO absorption bands for meso-C-acyl complexes 

33-35, which contrast with 37 where the ester carbonyl is not conjugated with the allylic moiety. 

Substituents R that tend to lower the energy of the π*(C=O)RCO orbital appear to foster counterintuitively 

a lower ν(C=O)RCO frequency, perhaps indicating that a reduced competition for the π*(C=O)RCO orbital 

enhances the contribution from the resonance tautomer analogous to 33′. C3-substitued acyl complexes 

32 and 36 show that the low-frequency acyl stretch is not unique to the meso-C-substituted examples, 

although C2-carboxyl complex 31c exhibits ν(C=O) some 100 cm-1 lower than C3-ethyl ester complex 

36. NMR spectroscopic data, assembled in Table 6, appear to be less diagnostic, but of note is the 

unusually upfield shifted resonance of the terminal carbon C1 in complexes 35, accompanied by Hanti 

resonances of ca. 0.7 ppm. However, this is not strongly indicative of an agostic interaction, which 

typically shifts 1H and 13C resonances noticeably upfield of TMS. [73] 13C chemical shifts of allylic 

ligands in general are reported to occur between ca. 25 and 140 ppm, [66] with terminal and central 

carbons for most complexes appearing in the range of 42-86 and 102-128 ppm, respectively; [98] for 

this discussion, the chemical shifts pertaining to 39 are used as a reference. [99] Hence, the upfield 

shifts, typically seen here for complexes of type [CpM(CO)2(η3-allyl)], are presumably mostly due to 

magnetic anisotropy effects of the Cp ring. The lower frequency resonances of C1 and C3 in 32, 34 and 

35 compared to 36 are perhaps a manifestation of augmented sp3 hybridisation at the allylic termini, as 

a result of contributing resonance forms 32′ and 33′. In support of an accumulated positive charge at C2 
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in 32′, the meso carbon in 32 features a significantly downfield 13C resonance. The broad proton 

resonances in complexes 35 are readily attributed to exo ⇌ endo isomerism; variable temperature NMR 

experiments on the meso-acylallyl complex [CpW(CO)2(1,2,3-η)-2-(methoxycarbonyl)-4-methyl-2,4-

pentadien-1-yl)] confirmed that this compound adheres to the expected rotation about the W–allyl 

vector (Scheme 7c) [100] (in accordance with the discussion in Section 2.2). Deserving a brief comment 

is related η3-vinylcarbene complex 38 (Scheme 8). [99] The latter is readily converted into 

corresponding allyl complex 39 when treated with a hydride-donating nucleophile, suggesting the 

possibility that the η3-vinylcarbene derived from 40 might be obtained from 33 with appropriate alkyl-

substitution, or treatment with, e.g., Ph3C+ (Scheme 8); indeed, it is intuitive to equate the observed 

agostic interaction (vide supra) in 33 as an arrested state on this hypothesised route to the respective η3-

vinylcarbene. Vinylcarbene complexes are also relevant as their existence has been suggested in 

terminal nucleophilic substitution coordinated allylic moieties bearing C1-alkoxy or arylsulfonyloxy 

substituents. Such complexes are based on the related TpMo(CO)2 (Tp = κ3-tris(pyrazolyl)borate) 

fragment. [101] 

 

 

Chart 7. Apparent agostic interactions in meso-C-acylallyl complexes 33a, 34b, 34c identified in corresponding 

crystal structures by unusually acute W‒C–H bond angles and the close proximity of the agostic hydrogen. The 

crystal structure of 33a presents the most convincing case with a W–H distance (dα) of just 1.590 Å. The W–H 
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distances of 2.380 and 2.377 Å for 34b and 34c, respectively, are just within the typical region for agostic 

interactions. The agostic terminus in 34c exhibits a curious configuration whereby the syn hydrogen is almost 

entirely orthogonal to the plane of the allylic ligand. This is indeed reminiscent of the orientation of the 

corresponding phenyl substituent in the η3-vinylcarbene complex 38 (Scheme 8). The postulated tautomerism 

shown for 33 ↔ 33′, complimentary to that shown in Chart 6, provides an explanation for the observed agostic 

interaction. 

 

 

Chart 8. Complexes 32-35 bearing mesomerically influencing groups at C2 (numbering for the allylic carbons, 

as referred to in the tabulated data and the main text, are labelled on 33), as well as C3 substituted 1-ethylacetyl-

allyl complex 36, and β-acyl complex 37, selected for comparison of spectroscopic data presented in Tables 5 and 

6. [M] = CpM(CO)2. 

 

Table 5.  

Complex ν(CO)MCO /cm-1 ν(CO)RCO /cm-1 Ref. 

32 1931, 1843 1601 [95] 

33a 1969, 1897 1661 [97] 

33b 1967, 1899 1659 [97] 

33c 1968, 1898 1658 [97] 

33d 1964, 1895 1620 [97] 

34a 1949, 1874 1705 [102] 

34b 1946, 1868 1703 [102] 

34c 1944, 1872 1695 [102] 

35a 1997, 1981, 1939, 1903a 1741, 1727 sh [103] 

35b 1962, 1942, 1892, 1864a 1699 [103] 

35c 1979, 1956 sh, 1909, 1874 sha 1601 [103] 
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36 1955, 1869 1697 [104] 

37 1946, 1866 1776 [105] 
a Four ν(CO) bands observed are presumably due to the co-existence of two exo / endo isomers; in other examples 

two reported absorptions do not necessarily preclude the existence of both exo and endo isomers if their ν(CO) 

bands are overlapping. 

 

Table 6. 

 δ 13C /ppma  δ 1H /ppm   

Complex C1 C2 C3  Hsyn Hanti Solvent 1H / 13C Ref. 

32 23.4 140.9 37.7  3.50 (C1), 4.09 (C3) 2.99 CDCl3 [95] 

34a 19.4 61.9 81.5  2.69 (C1), 2.02 (C3) 0.68 C6D6 [102] 

34b 19.6 61.7 78.0  2.70 (C1), 1.96 (C3) 0.66 C6D6 [102] 

34c 19.1 60.8 78.8  2.73 (C1), 1.93 (C3) 0.72 C6D6 / CDCl3 [102] 

35a 27.2 62.0 27.2  3.01 br 1.12 br C6D6 [103] 

35b 24.7 —b 24.7  3.34 br 1.75 br C6D6 [103] 

35c 26.1 —b 26.1  3.00 br 1.65 br CD3CN / acetone [103] 

36 38.9 64.5 37.6  3.22 (C1), 3.74 (C3) 2.75 CD3CN / C6D6 [104] 

39c 47.1 103.2 47.6  3.80, 3.84 — CD3CN / CDCl3 [99] 
a Refer to Chart 8 for the numbering system. 
b Not reported in the literature source. 
c Refer to Scheme 8; provided as an example for an allyl tungsten complex bearing no strongly influencing 

heteroatomic functional groups, in the absence of applicable data for the unfurnished compound [CpW(CO)2(η3-

C3H5)] (4). 

 

 
Scheme 8.  The reaction of η3-vinylcarbene complex 38 with a hydride nucleophile resulting in η3-allyl product 

39. Tentatively, resonance tautomer 33′ may be represented as an arrested state to C‒H activation along a route 

to corresponding η3-vinylcarbene complex 40. It is postulated that alteration of the allylic substituents, or 

additional reagents, may promote this reaction. [99] 
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Characterisation of the postulated fluxionality, agostic interactions and reactivity in these 

complexes may be achieved with various analytical techniques.  X-ray crystallography is particularly 

informative,, although electrochemical methods, such as those employed in the characterisation of 26, 

27 and their derivatives [78,79], are also useful in the absence of structural data.  

Spectroelectrochemistry is powerful for identifying intermediates, tautomers and isomers by monitoring 

carbonyl infrared absorptions.  NMR techniques, especially heteronuclear couplings such as  1H-13C 

and 13C-183W, are also proven valuable for identifying and characterising agostic interactions, [73] 

although not in paramagnetic species. On the possible existence of comparably stable molybdenum and 

tungsten analogues of cationic allylchromium complexes 24, no example has yet been isolated. 

However, cyclic voltammetric studies have revealed almost entirely reversible anodic behaviour of 

complexes 13-15, the same being true for their tungsten congeners. [32,106] It is also worth noting here 

that the electrochemical oxidation was performed in acetonitrile, a relatively strong donor solvent, but 

to suggest that the oxidised species is stable in the presence of MeCN is not necessarily authoritative, 

given the short timescale of the conventional cyclic voltammetric experiment. Indeed, the cationic 

chromium complexes 24 are sensitive to donor solvents (see above). A disproportionation reaction 

occurs on introduction of MeCN to 24a, affording neutral complex 9a and dicationic tris(acetonitrile) 

complex 41a in roughly equal quantities (Scheme 9). [72] It would be interesting to see whether 9a is 

converted entirely into 41a and hexa-1,5-diene on electrochemical oxidation in MeCN, since 9a 

regenerated from the dispropotionation reaction of MeCN with 24a will be oxidised again under the 

positive electrode potential conditions. 

 

Scheme 9. The disproportionation reaction of cation 24a with acetonitrile, demonstrating the sensitivity of this 

family of 17 valence electron complexes to donor solvents. Gas chromatography has also confirmed the formation 

of hexa-1,5-diene, likely because of homolytic dissociation of allyl ligands from η1-bound intermediates, and 

subsequent dimerisation. [72] 
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2.5. Mixed nitrosyl carbonyl complexes [CpM(CO)(NO)(η3-allyl)]+ (M = Mo, W) 

The reaction of [CpM(CO)2(η3-allyl)] (M = Mo (3), W (4)) with nitrosonium salts does not lead to 

simple oxidation to yield cationic compounds with coordination sphere unperturbed. [72] Instead, one 

of the carbonyl ligands is exchanged for a nitrosyl ligand, affording the corresponding cationic 

complexes [CpM(CO)(NO)(η3-allyl)]+ (M = Mo (42), W) Scheme 10). This reaction is inhibited for the 

corresponding allylchromium complexes 9 (Section 2.4), a fact that may be ascribed to a smaller radius 

of the metal centre and hence more crowded coordination sphere (Section 2.4). [72,107,108] The 

replacement of one CO ligand with NO+, and the resulting overall positive charge, augments the 

susceptibility of the substituted complex to nucleophilic attack at the allylic ligand. Furthermore, the 

complex is chiral, and the indirect electronic asymmetry exerted on the allylic ligand directs addition 

of a number of nucleophiles with remarkable stereo- and regioselectivity. [29,109–111] This is also 

manifested in the slight rotation of the allyl ligand about the Mo‒allyl vector towards the carbonyl 

ligand in the allylmolybdenum nitrosyl complexes (illustrated in Schemes 10 and 11). As interpreted 

by the Davies-Green-Mingos (DGM) rules, [112] related cationic complexes derived from [Cp2M(η3-

allyl)]+ (M = Mo, W) are well known [113] to direct nucleophilic attack at the allylic ligand to the meso 

carbon, mediated by the relatively electron rich Cp2M fragment. [114] In contrast, the more electrophilic 

fragment CpMo(CO)(NO) directs a nucleophilic attack to the termini of the allylic ligand, affording 

stable π-olefin complex 43. Due to the asymmetry in η3-allyl complexes 42, a nucleophilic attack cis or 

trans to the nitrosyl ligand yields two diastereomeric π-olefin complexes; the presence of exo and endo 

isomers (Section 2.2) further complicates the situation. Scheme 11 illustrates these features for 

unsubstituted allylmolybdenum cation 42, but the diagram is also largely applicable to substituted, non-

prochiral (vide infra) analogues. Despite the apparently complex regiochemistry of the nucleophilic 

attack at these complexes, a remarkably high selectivity for the 43a ⇌ 43b rotameric pair is reported in 

the case of 42 and a number of substituted allyl derivatives. [109–111] This is understood to be a 

consequence of the relative rates of endo-exo isomerisation and the nucleophilic additions at the allylic 

termini cis or trans to the NO+ ligand. [115] Computational studies show that in the exo isomer the 

allylic carbon cis to NO+ is appreciably more susceptible to a nucleophilic attack than the trans terminal 
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carbon. Hence, nucleophilic addition occurs exclusively cis to NO+ in the exo conformation, and 

k1′′[Nu] is negligible. In the endo isomer, a very little difference in the charge and orbital coefficients 

between the two terminal carbons of the allyl ligand has been calculated for 42, with in fact a marginally 

more positive charge trans to NO+. [29,116] However, the reaction rates of nucleophilic addition to the 

endo isomer (k2′[Nu], k2′′[Nu]) are reported to be much smaller compared to those for the exo isomer 

(k1′[Nu]), and indeed smaller than the rate of the endo → exo interconversion (k-3). Importantly, it is also 

understood that addition of the nucleophile catalyses the endo ⇌ exo isomerism, further increasing k-3. 

Hence, π-olefin species 43a ⇌ 43b is formed almost exclusively from the exo conformation with 

explicit regioselectivity, the endo isomer being consumed by the rapid interconversion to the exo 

isomer. The latter transformation surpasses its own, less selective nucleophilic addition pathways. It 

therefore holds that k1′[Nu] > k-3 > k3 >> k2′[Nu] > k2′′[Nu]. Some substituted allyls are observed to 

significantly inhibit the exo-endo equilibration, and in this case the selectivity depends on the isomer 

present. Whilst the exo isomer still directs the nucleophile cis to NO+ and maintains the selectivity for 

π-olefin species 43a ⇌ 43b, the presence of the endo isomer will yield at least some of complementary 

diastereomer 43c ⇌ 43d, since k-3 is now much smaller than k2′[Nu]. In this system, the relative rates 

go as k1′[Nu] > k2′[Nu] > k2′′[Nu] >> k-3 > k3. [115] 

 

 

Scheme 10. Reaction of 3 with nitrosonium tetrafluoroborate to afford nitrosyl-substituted cationic complex 42. 

The reaction is applicable to different complexes bearing a wide range of substituted or cyclic allyl ligands. 

Alternative nitrosonium salts (e.g., NOPF6) have also been employed successfully. [72] 
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Scheme 11. The features of nucleophilic addition applicable to complexes derived from [CpMo(CO)(NO)(η3-

allyl)]+. The reaction of dicarbonyl parent compound 3 with NO+ is accompanied by rotation of the allyl ligand 

about the Mo-allyl vector towards the carbonyl ligand (shown by the red arrow); this rotation is also preserved in 

the π-olefin-bound species 43 (confirmed via X-ray crystallographic analysis). [109] Nucleophilic addition cis to 

the nitrosyl group in the exo conformer (k1′) and trans to NO+ in the endo conformer (k2′′) affords the rotameric 

pair 43a ⇌ 43b, whilst the trans addition to the exo conformer (k1′′) and the cis addition to the endo conformer 

(k2′) afford the rotameric pair 43c ⇌ 43d, which are diastereomers to 43a ⇌ 43b. [115] It is worth noting that the 

trans addition to the exo isomer (k1′′) was not observed.  

 

These processes (Scheme 11) thus provide a convenient means with which to prepare 

selectively, exo or endo isomers of substituted allyl derivatives of 42 that exhibit very slow rates of 

interconversion (k3, k-3). For example, treatment of [CpMo(CO)2(η3-cinnamyl)] (44) with NO+ yields 

exclusively 45 endo-cis, and rotation of the allylic moiety to the accompanying exo-trans rotamer is 

extremely slow (Scheme 12a). [111] Instead, the regioselectivity illustrated in Scheme 11 may be 

exploited to obtain the exo-cis isomer of 45 via nucleophilic attack of the appropriate Grignard reagent 

on 42 to afford the desired π-olefin complex (46), followed by hydride extraction with trityl 

tetrafluoroborate (Scheme 12b). The hydride abstraction proceeds with remarkable selectivity for the 
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exo-cis isomer of 45, whilst also maintaining the syn arrangement of the phenyl substituent. 

 

 

Scheme 12. Synthetic routes to a) the endo-cis isomer, as afforded via the conventional synthesis shown in Scheme 

10, and b) the exo-cis isomer. [111] 

 

A consideration of stereochemistry, both intrinsic to these nitrosyl complexes and as a result of 

the nucleophilic addition, further adds to the complexity of the discussion. The isolation of 45 exo-cis 

in Scheme 12b provides a substrate to which a nucleophile may be directed reliably to the phenyl-

substituted carbon of the allyl ligand (a testament to the strong directing power of the nitrosyl ligand). 

The nucleophilic attack results in the formation of a new chiral centre, which is preserved in the 

decomplexed olefin; its absolute configuration depends on the endo/exo conformation of the substrate 

and, in appropriately substituted allyls with two pro-chiral centres, the regioselectivity of addition. 

Scheme 13 illustrates this approach for syn,syn-1,3-dimethylallyl complex 47. Hence, the 

stereochemical outcome of the nucleophilic attack is governed by the same relative rates as delineated 

above (Scheme 11), and a single isomer 48 is afforded in the nucleophilic addition to 47 as a result of 

facile endo ⇌ exo interconversion. The nitrosyl complexes [CpM(CO)(NO)(η3-allyl)]+ themselves are 

chiral at the molybdenum centre, giving rise to enantiomers ((R,R)-48; (S,S)-48) as a result of the potent 

cis-directing influence of the NO+ ligand in the exo isomer (Scheme 13). [115] With the stereo- and 

regiochemical parameters in mind, it is particularly impressive that these transformations proceed with 
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such excellent selectivity to yield a single product. Above are just a few examples from many possible 

transformations of Group-6 cyclopentadienylnitrosyl complexes, but see also [117]. 

 

 

Scheme 13. Stereochemical consequences of nucleophilic addition to pro-chiral allylic substrates. Here, syn,syn-

1,3-dimethylallyl complex 47 is used as an example, but one may envisage more complex outcomes and product 

mixtures with asymmetrical allyls or nitrosyl complexes that exhibit slow endo ⇌ exo interconversion. The fast 

endo ⇌ exo isomerisation of 47 ensures that nucleophilic attack occurs almost exclusively on the exo 

conformation, which directs addition cis to NO+ to yield a single enantiomer of product 48, assuming parent 

compound 47 is optically pure. It is the absolute configuration around the molybdenum centre that dictates which 

enantiomer of 48 forms as a result of the aforementioned regioselectivity. Note that in some cases the R or S 

labelling may be subject to change for different nucleophiles, depending on their Cahn-Ingold-Prelog priority, as 

well as on decomplexation from the metal centre. [115] 

 

3. Complexes [M(CO)2(η3-allyl)(α-diimine)X] (X = anionic monodentate ligand) and related 

compounds  

 α-Diimines,  2,2ʹ-bipyridine (bpy) being typical, have long been used as N,Nʹ-chelating four-

electron donor ligands. [118]  Chart 8 presents selected α-diimines with the abbreviations employed. 

Accompanied by an anionic two-electron donor X (e.g., halide, pseudohalide), an L2X framework is 

constructed as a substitute for the six-electron donor η5-Cp ligand in the complexes described in Section 

2. A number of complexes with related mono- and bidentate ligands are also added to the discussion, 

including cationic analogues [M(CO)2(η3-allyl)(α-diimine)Lʹ]+, other complexes bearing bidentate 
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(L⏜L) donor ligands, and tricarbonyl complexes [M(CO)3(η3-allyl)(α-diimine)]+. 
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Chart 8. Representatives of a wide range of α-diimine ligands and their abbreviations as referred to in the main 

text. Related bi- and monodentate ligands presented in the main text are also depicted. 

 

3.1. Synthetic strategies 

 The first synthesis of complexes [M(CO)2(η3-allyl)(α-diimine)X] was reported in 1966 [119], 

shortly after that of the cyclopentadienyl analogues described in Section 2. The previously isolated 

tris(halido)-bridged dinuclear complexes [Et4N][M2(μ-X)3(CO)4(η3-allyl)2] (M = Mo, W; X = Cl, Br) 

(49) [120] undergo a bridge-cleavage thermal reaction with 2,2ʹ-bipyridine to afford [M(CO)2(η3-

allyl)(bpy)X] (50) (Scheme 14). Since then, numerous improved syntheses have followed and proved 

general for a wide range of α-diimines and anionic ligands X. Hull and Stiddard have presented a 

synthetic strategy starting with zerovalent metal precursors [M(CO)4(α-diimine)] (51) or [M(CO)3(α-

diimine)(py)] (py = pyridine) (52), [121] readily obtained from the corresponding hexacarbonyls. [122–

124] Subsquent oxidative addition by allyl-X (X = halide or pseudohalide) in refluxing THF affords 

respective Mo(II) or W(II) product 53 (Scheme 15). Tom Dieck and Friedel subsequently reported a 

synthetic route (Scheme 16) [125] that involves direct addition of allyl-X to [M(CO)6] in acetonitrile to 

give the versatile precursor [M(CO)2(MeCN)2(η3-allyl)X] (54), presumably in an analogous manner to 

Scheme 15 via the intermediate fac-[M(CO)3(MeCN)3]. Bis(acetonitrile) complex 54 is then treated 

with the desired α-diimine ligand, [106] a selection of which are listed in Chart 8. The latter synthesis 

is presumably derived from the stepwise procedure that involves preparation of the versatile 

intermediate [M(CO)3(MeCN)3] [126–129] from molybdenum or tungsten hexacarbonyl in refluxing 

acetonitrile (the tungsten here requires very long reaction times), followed by oxidative addition of 

allyl-X. 
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Scheme 14.  Thermal reaction of [Et4N][M2(μ-X)3(CO)4(η3-allyl)2] (M = Mo, W; X = Cl, Br) (49) with 2,2ʹ-

bipyridine. [120] 

 

 

Scheme 15. M = Mo, W; N⏜N = α-diimine. [121] 

 

 

Scheme 16. M = Mo, W; N⏜N = α-diimine; this synthesis is suitable for a wide range of α-diimine ligands.[125] 

An analogous route to tungsten congeners stipulates the prior synthesis of the intermediate fac-

[W(CO)3(MeCN)3], followed by the oxidative addition of allyl-X to yield the tungsten derivative of 54. [130] 

 

An alternative photolytic route to allyl tungsten analogues has been described, [131] whereby 

tungsten hexacarbonyl absorbs UV light in the presence of allyl-X to form 55, followed by facile 

substitution of two CO ligands by chelating α-diimines (Scheme 17). A more recent example in the 

literature alternatively employs anionic intermediate 56 to induce the oxidative addition step and 

produce α-diimine complexes 53 in high yields. [132] Tetraethylammonium salts [Et4N]X react with 

tetracarbonyl precursor 51 binding the desired α-diimine. The resulting anion, fac-[M(CO)3(α-

diimine)X]‒ (56), is sufficiently nucleophilic to complete the oxidative addition step rapidly at room 

temperature and with high conversion (Scheme 18). This route provides a more efficient access to 

tungsten congeners of 53; slower kinetics and more accessible decomposition pathways typically make 

their syntheses more challenging compared to the molybdenum derivatives. The route via an anionic 

intermediate is more convenient than that in Scheme 17, which requires long reaction times. Several 
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complexes analogous to 53, bearing substituted allylic ligands, have also been prepared by this method. 

Noteworthy is the complex [Mo(CO)2(η3-cyclohexenyl)(bpy)Br] (58) that was successfully prepared 

from anionic tricarbonyl intermediate 57, albeit in modest yield (Scheme 19). [132] However, the 1,10-

phenanthroline (phen) congener [Mo(CO)2(η3-cyclohexenyl)(phen)Br] was found to be  particularly 

sensitive to oxidation and its isolation failed. 

 

 

Scheme 17. M = W; N⏜N = α-diimine.[131] 

 

 

Scheme 18. In this synthesis, the retention of anionic ligand in intermediate 56 (as well as 59 in Scheme 20, and 

presumably 57 in Scheme 19) is noteworthy; although, in some cases exchange of this ligand was observed in 

solution upon standing. [132] 

 

Scheme 19. Preparation of complex [Mo(CO)2(η3-cyclohexenyl)(bpy)Br] (58). [132] 
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As mentioned in Section 2.1, organochromium complexes are typically more difficult to isolate 

than their molybdenum and tungsten congeners, and the α-diimine complexes represent no exception. 

The above synthetic methods are not applicable to complexes of chromium. However, in 1974 Brisdon 

and Griffith prepared  53 (M = Cr), also useful for the molybdenum and tungsten congeners. [133] The 

milder conditions of this reaction again involve preparation of an anionic intermediate, most 

conveniently achieved by the reaction of 51 with sodium iodide. The anionic intermediate (59) 

subsequently reacts with allyl-X to furnish M(II) iodo product 53-I (Scheme 20). 

 

 

Scheme 20. M = Cr, Mo, W; N⏜N = α-diimine; although for the chromium complexes, this reaction does not 

typically proceed for bidentate ligands other than 2,2′-bipyiridine. [130] 

 

An interesting route to cationic molybdenum tricarbonyl complex 62 proceeds via displacement 

of the η6-bound p-xylene ligand in 60 (Scheme 21). The resulting tris(tetrahydrofuran) adduct undergoes 

oxidative addition of an allyloxyphosphonium salt to furnish bis(tetrahydrofuran) allylmolybdenum 

complex 61. Use of an allyloxyphosphonium reagent inhibits coordination of a counterion, retaining 

the three carbonyl ligands, and the weakly coordinated THF moieties are then readily displaced by the 

desired α-diimine ligand. [134] This route uses mild conditions, and thus may be suited for preparing 

chromium complexes; (arene)chromium tricarbonyl complexes are well known, [135] so the precursor 

is readily obtained. Amongst the aforementioned preparative routes, it is yet to be proven whether all 

are general to the full complement of α-diimine ligands shown in Chart 8, in particular the 1,4-

diazabutadiene (dab) ligands bearing sterically demanding N-substituents that are more difficult to 

install. 
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Scheme 21. Preparation of cationic allylmolybdenum α-diimine tricarbonyl complex 62. [134] 

 

3.2. Mechanistic features, structural aspects, and dynamic behaviour 

The mechanistic details pertaining to the oxidative addition of allyl-X substrates to zerovalent 

Group 6 metal complexes, as described in Section 3.1, are not yet well understood and warrant some 

further discussion. There are clues amongst the distinct synthetic transformations described in Sections 

2.1 and 3.1, suggesting that the oxidative additions, conducted with the various synthetic intermediates, 

are not necessarily subject to the same mechanism. Brisdon and co-workers proposed two candidates 

for the mechanism by which complexation of the allyl ligand proceeds. [132] A pathway  involving loss 

of CO and subsequent pre-coordination of the (localised) olefinic part of the allylic substrate, followed 

by rapid displacement of the leaving group Xʹ from the α-carbon (Scheme 22), has also been postulated 

for the transformations [Ir(CO)L2X] → [Ir(CO)(η1-allyl)L2X]. [136] The expected inertness of the 

carbonyl ligands, the retention of the initially bound anionic ligand X, and the reported ingress of ligated 

Xʹ only after standing for some time, preclude a similar mechanism involving dissociation of X to form 

a coordinatively unsaturated species [M(CO)3(N⏜N)] (M = Mo, W), which then undergoes the oxidative 

addition step. Labelling studies with 13CO have demonstrated the lability of CO in similar complexes; 

[137–139] although dissociation of MeCN in some precursors and even ring opening of the chelate may 

form the highly fluxional, [137] 5-coordinate intermediate. The ensuing substitution by the olefinic 

moiety would therefore be expected to proceed via a dissociative mechanism. [140–142] A proclivity 

to M‒CO bond fission in the apical position was observed for [Mo(CO)4(dppe)], [139] and in the case 

of 56, the presence of the anionic ligand in the coordination sphere, as well as the nature of the bidentate 
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ligand, could either enhance or inhibit this selectivity. Although the anionic π-olefin transient 

[M(CO)2(N⏜N)(η2-olefin)X]- (63) has so far eluded isolation, analogous neutral complexes 

[M(CO)3(R-dab)(η2-olefin)] (R-dab = substituted 1,4-diazabutadiene ligands; see Chart 8), prepared 

from [M(CO)4(R-dab)], have been characterised by X-ray crystallographic studies, [143] showing the 

propensity of 63 to undergo the intramolecular attack at the C–X σ* orbital, on account of the formal 

negative charge of the complex, and the proximity of the C–X bond. This provides compelling evidence 

that Scheme 22 applies as the prevailing mechanism for the synthetic routes in Schemes 2, 15 and 16; 

the latter presumably proceeding via dissociation of CO and/or MeCN from fac-[M(CO)3(MeCN)3] as 

in Scheme 3, or from cis-[M(CO)4(MeCN)2]. Further evidence comes from studies investigating the 

propensity for some molybdenum-based systems to effect oxidative addition to allylic acetates with 

retention of stereochemistry. [144–153] Of particular relevance is the oxidative addition to 

[Mo(CO)3(MeCN)3] by chiral allylic substrate 64, which is reported to proceed with retention to yield 

allylmolybdenum complex 66a [144] via chelating olefinic intermediate 65a (Scheme 23a). [153,154] 

Lower selectivity is observed under different conditions; the pathway in Scheme 23b is competitive 

when there is a high concentration of the molybdenum precatalyst species ML6 present, [153] but π-

olefin species are implicit in both routes. Scheme 23 also pictures the two generalised transition states 

TS1 and TS2 that are applicable to a concerted mechanism with retention, and an intramolecular SN2-

type mechanism with inversion, respectively. [155] It is evident that the chelation of the acetate moiety 

leads to a concerted oxidative addition similar to TS1, but this is unlikely to apply to 63, since the 

necessity of concomitant coordination of the leaving group Xʹ does not follow the observation that the 

initially coordinated anionic ligand X is persistent in product 53. However, this does not preclude a 

concerted pathway via TS1, see Sections 2.1 and 3.1. Further work is needed to explain the low yields 

for many complexes with cyclic allylic ligands, [8,132,156] and afford some insight on the potential of 

these complexes to effect various C‒X, C‒H or C‒C bond activations, which delineate a duality with 

the concerted mechanism of oxidative addition. 
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Scheme 22. A proposed mechanism pertaining to oxidative addition to the allyl-Xʹ moiety, via initial dissociation 

of a CO ligand and subsequent pre-coordination of the olefin part of allyl-Xʹ. [132] 

 

Scheme 23. Oxidative addition by zerovalent molybdenum precursors [MoL6] (L6 may refer to the hexacarbonyl 

complex, or various tetracarbonyl, tricarbonyl or dicarbonyl species bearing other L-type ligands; e.g., MeCN) to 

allyl-acetates, which may proceed with a) retention, in the case of low concentrations of the  precursor; or b) 

inversion, where high concentrations of ML6 are present. The transition states TS1 and TS2 are general for 

oxidative additions to allyl-X that may proceed with retention or inversion, respectively. [153, 154] 

 

The alternative mechanism proposed by Brisdon et al. [132] involves a direct SN2 expulsion of 

the allylic leaving group Xʹ by 56 to yield 7-coordinate σ-allyl intermediate 67 (Scheme 24), followed 

by dissociation of CO to furnish η3-allyl complex 53. It is not clear whether SN2 (TS3) or SN2ʹ (TS4) 

mechanisms are applicable in this case; whereas SN2ʹ reactions are less common, it has been alluded to 

in allylic substitutions involving rhodium(III) complexes [RhCl(PPh)3(η3-allyl)X] on account of 

increased substitution of the alkene significantly increasing reaction times. [157] Interestingly, 

compounds 53, having terminal alkene substitution on the allyl ligand, are obtained without longer 

reaction times or loss in yield. Increased substitution at the alkene terminus of the allylic substrate is 

conducive neither to diminished yields, nor longer reaction times. Instead, it appears that substitution 

at the α-carbon bearing the leaving group has this effect, as is the case for η3-cyclohexenyl derivatives; 
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[8,132] although, there are not enough examples to confirm this rationale. In support of a mechanism 

proceeding via a η1-allyl intermediate is the mixture of syn and anti isomers observed on oxidative 

addition to (Z) substituted allylic substrates in some examples. [158] This is despite the reported lack 

of the η3 ⇌ η1 ⇌ η3 isomerism for α-diimine complexes 53 (vide infra). It is thus proposed that this 

isomerism leading to the more stable syn isomer is inherent to the oxidative addition step. The SN2ʹ 

mechanism via TS4 could potentially be conducive to this by allowing rotation of the bonds in η1-allyl 

intermediate 67 before coordination of the localised olefinic component, and concomitant or preceding 

expulsion of a carbonyl ligand. Regarding the feasibility of intermediate 67, 7-coordinate complexes of 

Group 6 metals are well known (Chart 9). [159–169] Relevant to this discussion is the structural 

characterisation of some complexes of the type [M(CO)3(N⏜N)X2], such as 68, and of some 

orthometalated analogues such as 69.. These complexes are formed because of an intramolecular 

activation of an aryl C‒X bond, raising the question as to whether this may be applied to the 

intermolecular, concerted oxidative addition of allyl‒Xʹ (TS5) to the compounds of interest herein. 

Naturally, this involves coordination of the leaving group Xʹ, so this pathway is unlikely for 56. 

Furthermore, 70 (Chart 9), where the allyl group is chelated to the nitrogen donor group in an analogous 

manner to 69, was not prepared by intramolecular oxidative addition by the allyl group, [170] thus 

raising the question as to whether allylations may proceed intramolecularly to yield unusual chelate 

motifs. 
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Scheme 24. An alternative mechanism proposed by Brisdon et al. [132] in accompaniment to that delineated in 

Scheme 22. In this example, 56 undergoes oxidative addition of allyl‒X′ to afford 7-coordinate complex 67. Rapid 

dissociation of CO then furnishes η3-allyl product 53. The various possible transition states TS3-5 regarding the 

oxidative addition step, as discussed in the main text, are also illustrated. 

 

 

Chart 9. 7-Coordinate complexes, such as 68 and 69, are well known for Group 6 metals, hence supporting the 

feasibility of 67 in the mechanism illustrated in Scheme 24. Complex 70 is an example of a relevant structure, 

distinguished by an unusual chelate motif, whereby the allylic ligand is joined to one of the N-donor ligands via 

a methylene bridge. 

 

Discussion surrounding the structural features belonging to complexes [M(CO)2(η3-

allyl)(L⏜L)X] and their cationic analogues [M(CO)2(η3-allyl)(L⏜L)Lʹ]+ imbues the literature, and the 

corresponding dynamic behaviour in solution is also frequently visited. An analogous exo ⇌ endo 

rotamerism pertaining to the allyl ligand, is not generally observed in the neutral complexes 

[M(CO)2(η3-allyl)(L⏜L)X] (in contrast to the cyclopentadienyl complexes described in Section 2.2), 

and in the solid state, the open face of the allylic ligand is almost invariably orientated over the carbonyl 

ligands as in structure C and D (Chart 10). From computational studies [114] it is understood that the 

alignment of the allyl ligand in C and D represents the lowest-energy orientation by ca. 40-60 kJ mol-1, 

whereas that with the allyl ligand rotated by 180° in Cʹ and Dʹ does not represent a potential energy 

minimum; hence, the latter is the only observed rotamer in variable-temperature NMR studies of 

disphosphine complexes (vide infra). [171] Detailed studies [114] suggest that the π-orbitals Ψ1,2,3 of 

the allyl ligand maintain a more efficient overlap with the metal-centred orbitals in C, as opposed to the 

respective rotamer Cʹ. Amongst the remaining three sites of the roughly octahedral coordination sphere, 

which are occupied by the L⏜L and X ligands, there is a further opportunity for isomerism illustrated 

by C and D. The bidentate ligand may occupy the equatorial plane together with the carbonyl ligands 
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as in the symmetrical stereoisomer C, or assume an axial arrangement as in the asymmetric stereoisomer 

D, which is characterised by a pair of enantiomers (D1 and D2; Scheme 25). Crystallographic studies 

show that both structures are common: for examples see Table 7, and accompanying references. 

Furthermore, there are a few reported examples of a mutually trans-carbonyl stereoisomer E, but this 

case is rare and apparently only adopted by dmpm (Chart 8) complexes (Table 7; entries 67, 68). 

 

 

Chart 10. Stereoisomers adopted by the various complexes listed in Table 7. C and D are the isomers most 

ubiquitous amongst the solid state structures of complexes explored in Sections 3 and 4. The 180° rotamer, Cʹ, is 

not observed, but rotamer Dʹʹ is adopted by a few isolated examples of dmpm (abbreviations refer to Chart 8) 

complexes; here the allyl ligand is rotated ca. 135° from D, such that the open face eclipses the anionic ligand X. 

Stereoisomer E is rare, exhibited by some dmpm complexes; the allyl ligand is orientated over one of the mutually 

trans carbonyl ligands. For cationic complexes, X is replaced by a neutral two-electron donor L. 

 

 

 

 

Table 7. Group 6 metal allyl carbonyl complexes bearing a variety of mono- and bidentate N- and P-donor ligands, 

with their structural forms as elucidated by their solid state structures. 

Entry Complexa Stereoisomerb Ref. 

2,2ʹ-Bipyridine Complexes   

1 [Mo(CO)2(η3-allyl)(bpy)Br] C [172] 

2 [Mo(CO)2(η3-1-MeO2C-allyl)(bpy)Br] C [173] 

3 [Mo(CO)2(η3-allyl)(bpy)(NCS)] C [174] 

4 [Mo(CO)2(η3-allyl)(bpy)(CH3)] C [175] 

5 [Mo(CO)2(η3-allyl)(bpy)(NCBH3)] C [176] 

6 [W(CO)2(η3-allyl)(bpy)(NCBH3)] C [176] 

7 [Mo(CO)2(η3-allyl)(bpy)(C≡CPh)] C [177] 
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8 [Mo(CO)2(η3-allyl)(bpy)(CF3SO3)] D [178] 

9 [Mo(CO)2(η3-allyl)(4,4’-tBu2-bpy)Cl] C [179] 

10 [Mo(CO)2(η3-allyl)(4,4’-Me2-bpy)Br] C [180] 

1,10-Phenanthroline Complexes   

11 [Mo(CO)2(η3-allyl)(phen)F] C [181] 

12 [Mo(CO)2(η3-allyl)(phen)Cl] C [175] 

13 [Mo(CO)2(η3-allyl)(phen)Br] C [172] 

14 [Mo(CO)2(η3-1-MeO2C-allyl)(phen)Br] C [173] 

15 [Mo(CO)2(η3-1-Ph-allyl)(phen)(NCS)] C [182] 

16 [Mo(CO)2(η3-2-Me-allyl)(phen)(NCS)] C [183] 

17 [Mo(CO)2(η3-2-Me-allyl)(phen)(CH3)] C [177] 

18 [Mo(CO)2(η3-allyl)(phen)(C≡CPh)] C [184] 

19 [Mo(CO)2(η3-allyl)(phen)(CF3SO3)] D [178] 

20 [Mo(CO)2(η3-2-Me-allyl)(phen)(CF3SO3)] C [181] 

21 [Mo(CO)2(η3-allyl)(phen)(CF3CO2)] D [185] 

22 [Mo(CO)2(η3-1-Me-allyl)(phen)(CF3CO2)] D [185] 

23 [W(CO)2(η3-allyl)(phen)(OMe)] C [186] 

24 [Mo(CO)2(η3-2-Me-allyl)(phen)(OH)] C [187] 

25 [Mo(CO)2(η3-2-Me-allyl)(phen)(SH)] C [188] 

26 [Mo(CO)2(η3-allyl)(phen)NCCH2] C [189] 

27 [Mo(CO)2(η3-2-Me-allyl)(phen)(pTol-NH)] C [190] 

28 [Mo(CO)2(η3-2-Me-allyl)(phen)(pTol2-N)] C [191] 

29 [Mo(CO)2(η3-allyl)(phen)(CN)] C [192] 

30 [Mo(CO)2(η3-allyl)(2,9-Me2-phen)Cl] C [193] 

Other α-Diimine  Complexes    

31 [Mo(CO)2(η3-allyl)(Xyl2-bian)(NCS)] D [194] 

32 [Mo(CO)2(η3-allyl)(pClPh2-bian)Br] D [195] 
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33 [Mo(CO)2(η3-allyl)(1,4-Cy2-dab)Br] C [196] 

34 [Mo(CO)2(η3-2-Me-allyl)(1,4-Cy2-dab)Cl] C [197] 

35 [Mo(CO)2(η3-allyl)(1,4-tBu2-dab)Br] C [198] 

36 [Mo(CO)2(η3-allyl)(dpa)Br] C [199] 

37 [Mo(CO)2(η3-2-Me-allyl)(κ2-tpa)Br] D [200] 

38 [Mo(CO)2(η3-2-Me-allyl)(κ2-tpa)(CH3SO3)] D [200] 

39 [Mo(CO)2(η3-allyl)(dpzm)Cl] C [201] 

40 [W(CO)2(η3-allyl)(3,5-Me2-dpzm)Cl] C [201] 

41 [Mo(CO)2(η3-allyl)(Ph-3,5-Me2-dpzm)Br] C [202] 

42 [Mo(CO)2(η3-allyl)(2-Me-imamim)Br] D [203] 

43 [Mo(CO)2(η3-allyl)(pyim)Br] C [159] 

44 [Mo(CO)2(η3-2-Me-allyl)(pyim)Cl] C [159] 

45 [Mo(CO)2(η3-allyl)(pyim)CF3SO3] D [204] 

46 [Mo(CO)2(η3-2-Me-allyl)(biim)Br] C [205] 

47 [Mo(CO)2(η3-allyl)(1-Ph-pyamim)Cl] C [193] 

48 [Mo(CO)2(η3-allyl)(1-Me,2-Ph-pymim)Cl] C [206] 

49 [Mo(CO)2(η3-2-Me-allyl)(1-mAcPh-pyamim)Cl] C [207] 

50 [Mo(CO)2(η3-2-Me-allyl)(1-pAcPh-pyamim)Cl] C [207] 

51 [Mo(CO)2(η3-allyl)(1-PhOH-pyamim)Cl] C [208] 

52 [Mo(CO)2(η3-2-Me-allyl)(1-PhOH-pyamim)Cl] C [208] 

53 [Mo(CO)2(η3-2-Me-allyl)(1-EtO2Et-pyamim)Cl] C [209] 

54 [Mo(CO)2(η3-2-Me-allyl)(1-HO2Pr-pyamim)Cl] C [210] 

55 [Mo(CO)2(η3-allyl)(1-oMeOPh-pymim)Cl] C [206] 

Bidentate Aliphatic Donor Ligand Complexes   

56 [Mo(CO)2(η3-allyl)(en)Br] D [211] 

57 [W(CO)2(η3-allyl)(en)Br] D [211] 

58 [Mo(CO)2(η3-allyl)(en)N3] D [211] 
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59 [W(CO)2(η3-allyl)(en)N3] D [211] 

60 [Mo(CO)2(η3-allyl)(en)(NCBH3)] D [176] 

61 [W(CO)2(η3-allyl)(en)(NCBH3)] D [176] 

62 [W(CO)2(η3-allyl)(en)(NCS)] D [212] 

63 [Mo(CO)2(η3-allyl)(en)(CN)] C [211] 

64 [W(CO)2(η3-allyl)(en)(CN)] C [211] 

65 [Mo(CO)2(η3-allyl)(dppm)Cl] D [213] 

66 [Mo(CO)2(η3-allyl)(dmpm)N3] Dʹʹ [214] 

67 [Mo(CO)2(η3-allyl)(dmpm)(CN)] E [214] 

68 [W(CO)2(η3-allyl)(dmpm)(C≡CPh)] E [214] 

69 [W(CO)2(η3-1-vinyl-allyl)(dmpe)Br] D [215] 

70 [Mo(CO)2(η3-allyl)(dppe)Cl] D [171] 

71 [Mo(CO)2(η3-1-Me-allyl)(dppe)Cl] D [171] 

72 [W(CO)2(η3-1-Me-allyl)(dppe)Cl] D [216] 

73 [Mo(CO)2(η3-allyl)(dppe)N3] D [217] 

74 [W(CO)2(η3-allyl)(dppe)(NCBH3)] D [176] 

75 [Mo(CO)2(η3-allyl)(dppe)(NCS)] D [212] 

Bis(monodentate) Ligand Complexes   

76 [Mo(CO)2(η3-allyl)(MeCN)2Br] C [218] 

77 [Mo(CO)2(η3-allyl)(MeCN)2NCS] C [219] 

78 [Mo(CO)2(η3-allyl)(MeCN)2(NCBH3)] C [220] 

79 [Mo(CO)2(η3-2-Me-allyl)(MeCN)2Cl] C [221] 

80 [Mo(CO)2(η3-allyl)(py)2(PhCO2)] D [147] 

81 [Mo(CO)2(η3-allyl)(pz)2Br] D [222] 

82 [Mo(CO)2(η3-2-Me-allyl)(pz)2Cl] D [223] 

83 [Mo(CO)2(η3-allyl)(Ph2-imidam)2Cl] D [224] 

Cationic Complexes   
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84 [Mo(CO)2(η3-allyl)(bpy)(MeCN)]+ D [172] 

85 [Mo(CO)2(η3-1-vinyl-allyl)(bpy)(MeCN)]+ D [170] 

86 [Mo(CO)2(η3-allyl)(bpy)(py)]+ C [225] 

87 [Mo(CO)2(η3-allyl)(bpy)(4-CN-py)]+ C [180] 

88 [Mo(CO)2(η3-allyl)(bpy)(4-Me-py)]+ C [180] 

89 [Mo(CO)2(η3-allyl)(4,4’-Me2-bpy)(MeCN)]+ D [180] 

90 [Mo(CO)2(η3-allyl)(4,4’-tBu2-bpy)(H2O)]+ D [179] 

91 [Mo(CO)2(η3-2-Me-allyl)(phen)(H2O)]+ C [187] 

92 [Mo(CO)2(η3-2-Me-allyl)(phen)(pTol-NH2)]+ C [188] 

93 [Mo(CO)2(η3-allyl)(dpa)(MeCN)]+ D [226] 

94 [Mo(CO)2(η3-2-Me-allyl)(biim)(tBuNC)]+ c C [205] 

95 [Mo(CO)2(η3-allyl)(dmpm)(MeCN)]+ Dʹʹ [213] 

96 [Mo(CO)2(η3-allyl)(dppe)(MeCN)]+ D [172] 

Tricarbonyl Complexes   

97 [Mo(CO)3(η3-2-Me-allyl)(Xyl2-Me2dab)]+ D [134] 

a Refers to Chart 8 for ligand abbreviations. 
b Illustrated in Chart 10; in the solid state. 
c The tBuNC ligand is bound through the carbon atom. 

 

Table 7 reveals few clear trends regarding the stereoisomerism of the listed allyl carbonyl 

complexes. It appears that the adopted stereoisomer is subject to subtle electronic and steric effects from 

all the ligand types. For example, most α-diimine ligands and other unsaturated N,Nʹ-bidentate donor 

ligands favour structure C, but some ligands such as bian and tpa (Chart 8) are strongly inclined to D. 

Strong-field, soft anionic ligands appear to particularly favour isomer C, with CN– even negating the 

tendency for complexes bearing aliphatic-backbone N- or P-donor ligands to adopt the form of 

stereoisomer D (entries 63, 64). Conversely, weakly donating anionic ligands such as CF3SO3
- promote 

structure D, most notably amongst complexes of phen and bpy. Cationic complexes exhibit an apparent 

proclivity to adopt stereoisomer D, along with heterocyclic monodentate ligand complexes. Acetonitrile 

complexes of type [M(CO)2(η3-allyl)(MeCN)2X] instead favour C, perhaps reflecting the lower bulk of 



58 

 

the linear MeCN ligands. The nature of the allylic ligand appears to have less effect on the 

stereochemistry of the complex, except for 2-methylallyl complexes exhibiting a decided predisposition 

for C. This isomerism is further complicated by a dynamic behaviour in solution.  Variable-temperature 

NMR experiments offer the best insight into the interconversion mechanisms and observed isomeric 

preferences. Such studies are readily found in the literature for diphosphine complexes [M(CO)2(η3-

allyl)(P⏜P)X], [171] which are characterised by the existence of a rapid exchange process 

interconverting three isomeric forms C, D1 and D2, the latter two delineating a pair of enantiomers 

(Scheme 25). This interconversion is achieved by a ‘trigonal twist’, whereby the L2X component of the 

complex rotates relative to the other trigonal pyramidal motif constructed from the allyl and two 

carbonyl ligands, through a trigonal prismatic transition state. [158,171,172,176] Such a transformation 

is reminiscent of the free rotation manifested by the Cp ligand in complexes discussed in Section 2. In 

the latter case this rotation is largely inconsequential given the symmetry of the ligated Cp moiety, but 

it is to be expected that the energy barriers to interconversion of C, D1 and D2, and their stabilities, will 

vary with the ligand combinations L2X. In the ambient-temperature 31P NMR spectrum measured for 

[Mo(CO)2(η3-allyl)(dppe)(NCBH3)] (71), the observed sharp singlet at 52.2 ppm is consistent with an 

averaged signal from the two phosphorus atoms undergoing the rapid trigonal twist mechanism, which 

broadens upon cooling to -90 °C and eventually becomes resolved into two singlets of equal intensities 

at 48.0 and 47.1 ppm. [176] The non-equivalence of the two phosphorus atoms in 71, manifested in the 

limiting low-temperature spectrum, is due to the slowing of the rapid trigonal twist mechanism 

interconverting D1 and D2. Since D1 and D2 are effectively enantiomers in this circumstance (the 

interconversion of δ and λ conformations of the diphosphine backbone is rapid in comparison; vide 

infra), no more resonances are expected; however, in this low-temperature spectrum a broader 

resonance materialises at 65.9 ppm. The latter signal is most likely attributed to a more short-lived 

occupancy of the symmetric C isomer on the trigonal twist coordinate, which presumably represents a 

higher-energy minimum for diphosphine complexes (i.e., k-4, k-6 > k4, k6; Scheme 25), attesting to the 

marked preference amongst these complexes for structure D in the solid state (Table 7; entries 65-75).  

 



59 

 

 

Scheme 25. Rotation of the L2X component in complexes [Mo(CO)2(η3-allyl)(L⏜L)X] (and similarly the various 

other complexes discussed in this section, including cationic [Mo(CO)2(η3-allyl)(L⏜L)L′]+ complexes and those 

featuring various chelation motifs), engendered by a trigonal twist relative to the [M(CO)2(η3-allyl)] component. 

The various rate constants k4,5,6 and corresponding reverse rate constants illustrate that interconversions between 

the structures C, D1 and D2 are not necessarily equivalent. 

 

For complexes of type [M(CO)2(η3-allyl)(α-diimine)X], fluxional behaviour in solution, as 

ascertained by variable temperature 1H NMR, contrasts with that of the aforementioned diphosphine 

complexes.  Low solubility precluded studies of the dynamic behaviour of many such compounds, 

[119,121] but the more soluble complex [Mo(CO)2(η3-allyl)(4,4′-tBu2-bpy)Cl] (72) (Figure 9) was 

examined spectroscopically. [179] The room-temperature 1H NMR spectrum contains two separate sets 

of resonances (pertaining to two sets of resonances belonging to 4,4′-tBu2-bpy ligands and two A2M2X 

patterns of symmetrical allyl ligands) that ostensibly indicate the presence of two symmetrical isomers. 

However, this room temperature spectrum is also consistent with the presence of isomer C and a rapidly 

interconverting D1 ⇌ D2 pair. Upon cooling to -65 °C, the latter set of resonances broaden and diverge, 

revealing an asymmetric signal pattern which exhibits non-equivalence of the bpy ligand protons, 

characteristic of the now only slowly interconverting D1/D2 enantiomeric pair (k5, k-5). This assignment 

is supported by a) a larger chemical shift divergence of the now inequivalent ortho-protons (H6) in 

comparison to bpy proton resonances more distant from the coordination sphere; b) more pronounced 

difference in chemical shift between the two allylic Hsyn protons (with accompanying coalescence at 

higher temperatures) than the Hanti protons in the low temperature limiting spectrum; and c) NOEs 

between the ortho-protons and Hsyn/Hmeso in related examples (vide infra). [158,199] In the low 

temperature spectra, the resonances belonging to structure C remain sharp and unperturbed. However, 



60 

 

when the temperature is increased to 55 °C, the two sets of resonances in the room temperature spectrum 

broaden, thus implying a concomitant slower C ⇌ D interconversion (k4, k-4, k6, k-6). Most interestingly, 

the ratios of C and D vary between the CDCl3 and CD2Cl2 solvents; the ratios 1:1 and 2:1, respectively, 

support the idea that the two isomers are very close in energy, and one might suggest that structure D 

is more polar. The foregoing discussion highlights the principal differences in isomerism between 

diphosphine and α-diimine complexes, represented by 71 and 72, respectively.  For the latter the relative 

stabilities of the symmetric (C) and asymmetric (D) isomers are similar, but the kinetic barriers to C ⇌ 

D and D1 ⇌ D2 interconversions are markedly different. Indeed, ab initio DFT calculations on the model 

complex [Mo(CO)2(η3-allyl)(bpy)(NCH)]+ have demonstrated that structure D is more stable than C by 

just 2 kJ mol-1. [172] VT NMR spectra for 71  show, however, that although the interconversion barriers 

between the 3 isomers on the trigonal twist coordinate (Scheme 25) are relatively low, isomer C has 

significantly lower stability than the D1/D2 enantiomeric pair. For further examples see below. Complex 

72 was used as a precursor to the cationic complex [Mo(CO)2(η3-allyl)(4,4’-tBu2-bpy)(H2O)]+ (73) that 

serves as a particularly intriguing example of an aquo-ligated organometallic compound. Conversely, 

73 adopts stereochemistry D in the solid state. [179] 
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Figure 9. 1H NMR spectra of 72 recorded in CDCl3 over the temperature range -65 °C to 55 °C. [179] Shown 

here are the signals in the region of the 4,4ʹ-tBu2-bpy proton signals only; the allylic resonances are overlapping 

and hence less diagnostic. 

 

A dynamic behaviour in agreement with the aforementioned α-diimine complex 72 is observed 

in variable-temperature 1H NMR spectra of complexes [Mo(CO)2(η3-allyl)(dpa)(MeCN)]+ (74), [226] 

and [Mo(CO)2(η3-allyl)(dpa)Br] (75) [199] (Chart 11), amongst other related complexes based on the 

M(CO)2(η3-allyl) fragment (see also Section 4.1). [227] An unusual phenomenon is engendered by the 

N-substitution of the dpa-derivative ligand at the non-coordinated nitrogen, exemplified by the 

complexes [Mo(CO)2(η3-allyl)(dpa)Br] (75), [Mo(CO)2(η3-allyl)(dpaCOFc)Br] (76), and [Mo(CO)2(η3-

allyl)(κ2-tpa)Br] (77) (Chart 11). Whereas unsubstituted dpa complex 75 favours structure C in both the 
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solid state and solution, [199] variable temperature 1H NMR studies on 77 (which adopts structure D in 

the solid state) reveal the total absence of C in solution. At room temperature, 77 exhibits one set of 

averaged resonances in CD2Cl2 that collapse to the asymmetric D1/D2 pair. [200]  Note that here one 

pyridine remains uncoordinated while in related complexes intraligand pyridyl exchange occurs. 

[227,228] It is not clear why such a disparity arises, based on such a remote substituent on the dpa-

derivative ligand. It may be a consequence of the non-planar ‘boat-like’ conformation of the six-

membered metallacycle constructed from the κ2-dpa ligand, and the subsequent steric obtrusions within 

the coordination sphere and the ligand itself. Conversely, the 1H NMR spectra recorded for the 

corresponding unsubstituted κ2-dpa complex (75) between -40 °C and room temperature are in fact 

consistent with three distinguishable isomers present in the ratio 1:0.3:0.1. The two dominant isomers 

follow a trend over the examined temperature range in accordance with the above discussion for 72 

(Figure 9). The major isomer is assigned to structure C, as found in the solid state of 75. The subordinate 

set of resonances due to the second isomer collapses at low temperature, in accordance with a slowly 

interconverting enantiomeric pair D1/D2. Finally, the minor species (ratio 0.1) corresponds to a set of 

resonances belonging to a symmetrical structure, which remain intact on cooling. Given the apparent 

presence of water impurity (ca. 3.9 ppm in DMF-d7; the downfield shift on lowering the temperature 

indicates a hydrogen-bonded proton), the minor species may in fact be a cationic H2O adduct of the 

parent compound (vide supra). Indeed, this third species is absent in the corresponding spectrum of 74, 

which also appears to exhibit parallel dynamic behaviour to 72. However, the spectrum indicates that 

in comparison the C ⇌ D interconversion is faster and the D1 ⇌ D2 interconversion slower for 74. [226] 

Upon warming 74 to room temperature, the inconspicuous advent of a duplicate set of N‒H signals 

accompanies the broadening resonances of the two major species, as the C ⇌ D interconversion rate 

becomes rapid relative to the timescale of the NMR experiment (Figure 10). These emerging signals 

have been discussed as corresponding to isomers C′ and D′; the former has been identified, by use of 

theoretical calculations, to be a local potential energy minimum for the model complex [Mo(CO)2(η3-

allyl)(bpy)(NCH)]+, while isomer D′ in this case was found to be unstable. [172] The increasing 

intensity of these peaks with temperature, however, does not logically match this description.  An 

alternative possibility is dissociation of MeCN from cationic complex 74, and coordination of the 
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triflate counterion to form the neutral complex [Mo(CO)2(η3-allyl)(dpa)(OTf)] (78). The OTf– 

counterion associated with cationic complex 74 presumably interacts with the N–H proton through a 

hydrogen bond, a similar motif to that reported for the related complex [Mo(CO)2(η3-2-Me-allyl)(κ3-

tpa)][OTf]. [200] This association is then largely maintained throughout the temperature range, as 

demonstrated by the lacking upfield shift of the N–H proton resonances belonging to 74 (isomers C and 

D) upon warming to room temperature. However, the pronounced upfield shift of the emerging N–H 

resonances tentatively assigned to 78 is likely due to an analogous, weaker hydrogen bonding 

interaction, either with a coordinated OTf ligand in another molecule of 78, or the OTf-counterion 

associated with an adjacent molecule of 74. The former is entirely analogous to the hydrogen bond 

established between the N–H hydrogen and the bromide ligand in the solid state structure of 75, which 

also manifests an upfield shift of such proton resonances in the variable temperature 1H NMR spectra, 

as the interaction is compromised on warming. [199] Logically, the two weak resonances may belong 

to isomers C and D of 78, the latter presumably being capable of rapid interconversion of the two 

associated enantiomers D1 ⇌ D2. The concurrence of the coalescence concerning the two major sets of 

resonances (belonging to 74; C and the D1/D2 pair) with the hypothesised emergence of 78, presumably 

formed via dissociation of MeCN at higher temperatures, is perhaps no coincidence, and in fact it may 

be an intermediate through which the C ⇌ D interconversion of 74 is executed. The accompanying 

signal of free MeCN is not observed in the 1H NMR spectrum, but it may be concealed by peak overlap. 

A mechanism involving dissociation of a neutral ligand L to form a five-coordinate species has been 

suggested by Brisdon and Woolf in the case of acetylacetonate (acac) complexes [Mo(CO)2(η3-

allyl)(acac)(L)] (L = py); [229] however, this was unsubstantiated based on NMR spectra at room 

temperature. For further discussion on the lability of coordinated MeCN see Section 4.  
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Chart 11.  

 

 

Figure 10. 1H NMR spectra of 74 in CD2Cl2, showing the aromatic region. [226] The N–H proton resonances that 

grow as the solution is warmed to room temperature are marked with an asterisk. Some corresponding signals are 

just observable in the pyridyl proton region, but line broadening and overlap render their identification difficult. 

 

The separation of the two interconversions C ⇌ D and D1 ⇌ D2 in the case of 72 contrasts to 

that of 71 where the dppe ligand appears to rotate more freely. The higher barrier to the trigonal twist 

interconverting C and D in the case of α-diimine complexes, is readily attributed to a steric incursion 

between the rotating L2X component and the meso substituent of the allyl group, in the trigonal 

prismatic intermediate on the trigonal twist coordinate. This may be due to proximity to the allyl ligand 
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of a) a bulky anionic ligand, or b) substituents on the α-diimine ligand (e.g., the ortho protons of bpy 

(H6) or phen (H2, H9), or various bulky N-substituents on 1,4-diazabutadiene (dab) ligands). 

Presumably, in the case of 71 and the related chlorido complex [Mo(CO)2(η3-allyl)(dppe)Cl], neither of 

these factors apply, since the P-substituents of the diphosphine ligand are swept back away from the 

coordination sphere, and the M–P bond is longer (ca. 0.3 Å longer than d(M–N) for closely related allyl 

molybdenum complexes [175,230]). The trigonal twist mechanism is therefore rapid (indeed, the 1H 

NMR spectrum of 71 exhibits broad signals even at -90 °C [176]), and largely indiscriminate with 

regards to the C ⇌ D and D1 ⇌ D2 interconversions. The steric incursion between freely rotating N-

substituents and the meso hydrogen of the allyl ligand is also minimised in the case of Xyl2-bian and 

pClPh2-bian, whereby such aryl substituents are planar. Hence, these complexes adopt structure D in 

the solid state (Table 7; entries 31, 32), in contrast to those with bulkier N-substituents (e.g., tbutyl or 

cyclohexyl) (entries 33-35). It is evident that the barrier to the interconversion C ⇌ D is increased by 

substitution at the meso carbon of the allylic ligand, which, to some extent, might explain the marked 

stereochemical preference for equatorial isomer C exhibited by η3-2-Me-allyl complexes in the solid 

state. Substitution at the termini of the allyl ligand has a noteworthy effect on the solution dynamic 

behaviour of some complexes, exemplified by that of [Mo(CO)2(η3-crotyl)(phen)(CF3CO2)] (79) and 

[Mo(CO)2(η3-crotyl)(2,9-Me2-phen)(CF3CO2)] (80). [158] Owing to the additional chirality element at 

the substituted allylic terminus of the η3-crotyl ligand, the D1/D2 pair is now diastereotopic in nature, 

and may be distinguished in the 1H NMR spectra. Subsequently, it has been reported that 79 manifests 

just one isomeric form in the solution, 79-D1 (Scheme 26); the absence of diastereomer D2 may readily 

be attributed to the steric hindrance between the ortho-H of the equatorial pyridyl moiety and the methyl 

substituent on the allylic ligand. Supporting evidence came from NOEs observed between only one of 

the ortho protons of the phen ligand, and Hmeso (16%) and Hsyn (11%) of the allyl ligand (Scheme 26). 

An analogous steric phenomenon is likely the cause of the contrasting solution 1H NMR spectra 

recorded for 80, in which only isomer C was present over the investigated temperature, substantiated 

by a small NOE (2%) observed between one of the methyl substituents on the 2,9-Me2-phen ligand, and 

Hsyn of the η3-crotyl ligand (Scheme 26). The destabilisation of both D diastereomers in this case, as a 

result of the steric interference between the 2,9-Me2-phen ligand and the syn substituents of the allylic 



66 

 

ligand, is supported by the equivalent 1H NMR spectrum of the complex 

[Mo(CO)2(η3-allyl)(2,9-Me2-phen)(CF3CO2)] bearing the unadorned allyl ligand. Here again, the only 

observed structure in the solution is equatorial isomer C. The stereochemically rigid solution structures 

observed by 1H NMR for 79 and 80 are consistent with their crystal structures. However, the solution 

dynamics present in the unsubstituted phen complex [Mo(CO)2(η3-allyl)(phen)(CF3CO2)] (81) mimics 

that previously discussed for 4,4ʹ-tBu2-bpy complex 72 (vide supra), albeit with a reversal in the 

prevailing isomer (the C:D ratio of 1:2 in deuterated tetrachloroethane has been reported for 81). [158] 

 

  

Scheme 26. 

 

The fluxionality of these α-diimine complexes is elaborate and appears to depend on the exact 

nature of the α-diimine, monodentate X and allylic ligands. For further discussion in the context of the 

related amidinato complexes, see Section 4. In parallel to the cyclopentadienyl complexes in Section 2, 

no evidence for the operant η3 ⇌ η1 ⇌ η3 isomerism (Scheme 7a) in α-diimine compounds has yet been 

reported. However, for the related tris(pyrazolyl)borate (Tp) complexes (see Chart 3), the π ⇌ σ ⇌ π 

interconversion of the allyl moiety is well known, [70,231] raising the question as to whether complexes 

containing dpzm ligands (seen as bearing a resemblance to Tp), also exhibit this behaviour. Regarding 

the prototypical exo ⇌ endo isomerism of the Cp complexes (Section 2.2), an analogous rotamerism 

has been suggested in some cases to account for dynamic processes apparent in variable-temperature 

1H NMR spectra of the types of complexes [M(CO)2(η3-allyl)(L⏜L)X] and [M(CO)2(η3-allyl)(L⏜L)L′]+. 

Whilst it appears that none of these complexes adopts structure Cʹ in the solid state, another possibility 
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is that in some cases, the 180o rotamer equilibrates with C (in solution) , which is also consistent with 

the  C ⇌ D and D1 ⇌ D2 isomerism presented above. However, the extent to which Cʹ is apparently 

present depends largely on the nature of the complex, and is not easy to predict. An analogous 

equilibration between D and the respective 180° rotamer, D′, is also reported for some complexes that 

typically adopt this structure in the solid state: As mentioned previously, this is not the case for 

diphosphine complexes, [171] but ethylenediamine complexes have been reported to manifest this 

behaviour, identified by two separate sets of ABCDX resonance patterns in the low temperature 1H 

NMR spectra of [M(CO)2(η3-allyl)(en)X] (M = Mo, W; X = Br, N3). [211] The relative concentrations 

of each rotamer vary amongst the different complexes, most significantly with the anionic ligand, but 

the major isomer has invariably been established as the lower energy rotamer, D. [114] 

Complexes containing bidentate ligands bound via two P-donor atoms have received some 

attention pertaining to their unique dynamic processes and chirality. [171,216,230,232,233] The 

trigonal twist mechanism (vide supra), which is rapid at room temperature (ΔG‡ ≈ 30 – 45 kJ mol-1), 

has been well described for complexes [M(CO)2(η3-allyl)(P⏜P)X] (P⏜P = dmpm, dmpe, dppm, dppe; 

see Chart 8) adopting solid-state stereochemistry D, consistent with the VT NMR features.. At room 

temperature, the 31P{1H} NMR spectra exhibit one resonance pertaining to the two 31P nuclei that are 

magnetically equivalent by virtue of the rapid trigonal twist interconverting the two enantiomers 

(Scheme 27a). At sufficiently low temperature, the instantaneous structure manifests two separate 

resonances of equal intensity from each of the now non-equivalent 31P nuclei. This is paralleled by the 

magnetic non-equivalence of the allylic termini at low temperature, as elucidated by the respective 1H 

and 13C resonance patterns. [171] The above is applicable to diphosphine complexes, whereby only the 

chirality at the pseudo-octahedral metal centre is of consequence. The inherent chirality of the 

diphosphine backbone (Scheme 27d) does not perturb the simplicity of the NMR spectra, unless a chiral 

diphosphine is used, such that the conformation of the backbone is constrained, and interconversion 

between δ and λ epimers is arrested. [234] Additional chirality elements may be introduced with 

asymmetrical Group-16 donor ligands (e.g., R2P⏜AsR2), [171] or by substitution at one terminus of the 

allylic ligand. The latter gives rise to a room temperature 31P spectrum consistent with the non-
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equivalence of the two phosphorus atoms of the diphosphine ligand because of the now diastereotopic 

nature of the trigonal twist (Scheme 27b). Interestingly, the low temperature spectrum at -85 °C reveals 

the presence of just one diastereomer pertaining to the trigonal twist, presumably due to the reduced 

steric hindrance with the asymmetric allylic ligand in the preferred isomer (an analogous phenomenon 

to that observed in 79; Scheme 26). [216] Electronic circular dichroism measurements on the η3-crotyl 

complex [Mo(CO)2(η3-1-Me-allyl)(dppe)Cl] (Table 7; entry 71) have revealed that inversion at the 

stereogenic centre of the methyl-substituted allyl ligand also occurs (Scheme 27c), albeit much more 

slowly than the trigonal twist fluxionality. [230] Thus, the (R) ⇌ (S) interconversion of the η3-crotyl 

ligand is not manifested in the respective variable temperature NMR spectra, since the two (R) and (S) 

epimers are effectively enantiomeric. The mechanism by which the stereochemistry of the η3-crotyl 

ligand is inverted, is not known. However, rotation about the M–allyl vector and the ‘flip’ mechanism 

may be discounted, since the latter is necessarily accompanied by a syn-anti interconversion of the 

terminal substituents, and neither result in a change of absolute configuration about the stereogenic 

allylic termini. Hence, the haptotropic π ⇌ σ ⇌ π mechanism (Scheme 7a) was proposed as a feasible 

pathway to the observed slow interconversion. [230] Studies of complexes bearing allylic ligands with 

different substitution motifs, as well as alternative ancillary ligands, may provide some support for this 

hypothesis. Indeed, it is already well understood that variation of the anionic and diphosphine ligands 

(in particular the bite angle of the latter) alters the rate at which the trigonal twist fluxionality occurs. 

[171] In addition, the choice of anionic ligand has a bearing on the syn/anti isomerism of the substituted 

allylic ligand. [216] 
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Scheme 27. Dynamic processes as described for complexes [M(CO)2(η3-allyl)(P⏜P)X]. The trigonal twist 

mechanism (also referred to as a turnstile rotation in some literature) delineated in (a), induces an epimerisation 

that may be approximated to an interconversion between pseudo-enantiomers if the absolute configuration of the 

pseudo-octahedral metal centre is the only pertinent element of chirality. An additional chiral component may be 

introduced by substitution of the allyl ligand (b); the stereogenic centre may also undergo an interconversion as 

shown in (c). The δ ⇌ λ chirality of the diphosphine ligand shown in (d) is only encountered for chiral phosphines 

where the backbone is conformationally constrained.  

 

Interestingly, complexes bearing the dmpm ligand exhibit unique features amongst the collated 

Group 6 metal allyl carbonyls in Table 7. [M(CO)2(η3-allyl)(dmpm)Cl] (entry 65) adopts the form of 

stereoisomer D in the solid state, as is characteristic of the other diphosphine complexes, but the 

corresponding azido and cationic acetonitrile complexes (Entries 66, 95) are characterised by an 

orientation of the allyl group over the monodentate ligand, as in Dʹʹ (Chart 10). The cyanide and alkynyl 

(‒C≡CR) ligands are electronically different from other listed anionic ligands, being σ-donors but π-

acceptors.  Whilst the π-acidic character of the cyanide ligand is well known, alkynyl ligands are 

typically stronger σ-donors and their tendency to undergo π-back-donation depends on the substituent 

R. [235,236] Nevertheless, the two similar ligands typically yield complexes with comparable physical 

properties. [235,237] The examples in Table 7 demonstrate a decided influence on the stereochemical 

outcome for complexes bearing N⏜N donor ligands (entries 7, 18, 29, 63, 64, all adopting the form of 
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isomer C). In the case of the dmpm complexes bearing cyanide and phenylethynyl ligands (entries 67, 

68), novel trans isomer E is the favoured stereochemistry (Figure 11). DFT calculations have shown 

isomer E to be more stable for [Mo(CO)2(η3-allyl)(dmpm)(CN)] (82) than cis isomer Dʹʹ by 12.6 kJ 

mol-1. Unlike the aforementioned, highly fluxional diphosphine complex 82 is reported to be 

stereochemically rigid in solution at room temperature (Figure 11a). [214] However, a curious feature 

in the crystal structure of [W(CO)2(η3-allyl)(dmpm)(C≡CPh)] (83) (entry 68) challenges this 

assignment for the tungsten phenylethynyl complex (Figure 11b). The geometry of the allyl ligand in 

this case appears to parallel that of a tungstenacyclobutane moiety, with all four atoms C1, C2, C3 and 

W being co-planar and the orientation of the α-hydrogens suggesting sp3 hybridisation at the allylic 

termini. Also noteworthy is the strongly distorted thermal ellipsoid of the meso carbon (Figure 11b).   

We thus describe a flipping mechanism for pseudo-enantiomer interconversions involving a 

metallocyclobutane intermediate (Scheme 7b). This invites some investigation of the orbital interactions 

in the proposed metallacyclobutane intermediate, as well as the roles of the ancillary ligands and the 

metal centre in stabilising it. Some interesting bonding interactions have previously been described for 

metallacyclobutane complexes, [238] including a particularly intriguing α-β-(C–C–C) ‘agostic’ bond 

(here, ‘agostic’ is used loosely, normally being reserved for three-centre two-electron M–H–C 

interactions [73]). [239] The NMR spectroscopic data in this case are not symptomatic on because of 

the enantiomerisation which the interconversion may be approximated to. If this proposed dynamic 

process is either sufficiently slow or fast on the NMR timescale, well resolved 1H and 13C resonance 

patterns will be ostensibly consistent with just one isomer present.  

An interesting feature of the tungsten dmpm complexes is that wide range of NMR active nuclei 

may be probed conveniently. For example, the proton decoupled 31P NMR spectrum of 83 yields an AB 

quartet pattern consistent with the two expectedly non-equivalent phosphorus donor atoms (δ 31P 

= -40.67, -48.35 ppm; 2J(31P,31P) = 52 Hz). [240] In comparison, 82 exhibits a similar spectrum with 

chemical shifts δ 31P = -11.4, -21.4 ppm; 2J(31P,31P) = 85.4 Hz [183]. It is difficult to make any reasoned 

interpretation regarding the 31P chemical shifts in this case, given the dominance of the paramagnetic 

term within the shielding tensor of the 31P nucleus (Section 2.3). [241] In addition, the larger coupling 
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constant 2J(31P,31P) observed in 82 is not necessarily indicative of an increased bond strength, since this 

parameter varies significantly amongst different metals; molybdenum complexes reliably yield larger 

2J(31P,31P) values then their tungsten congeners. [242] Indeed, comparison of the two crystal structures 

(Figure 11) reveals that in fact the shorter M–P bonds are found in tungsten complex 83. In addition, 

spin-spin coupling between the tungsten and phosphorus atoms in 83 is observed; 1J(183W,31P) = 191.2 

Hz. Despite the apparent tungstenacyclobutanoid structure present in 83, the disordered structure is also 

entirely consistent with the presence of the two 180° rotamers with respect to the allyl ligand, which 

interconvert via a simple rotation. In support of this, similarly disordered structures have been reported 

in related complexes. [23,243,244] The crystal structure of the cationic analogue [Mo(CO)2(η3-

allyl)(dmpm)(MeCN)]+ reveals a most unusual bent carbonyl ligand. [213] A non-innocent behaviour 

involving electron transfer from the counterion, which takes the form of complex 49, or dinucleation 

through a μ2-carbonyl, could be the cause for this appearance. The carbonyl ligand hence assumes a 

bent geometry, avoiding a 19 valence electron metal centre. However, this phenomenon remains to be 

substantiated, and whilst not entirely unprecedented, [245] previously reported bent carbonyl ligands in 

crystal structures [246] have often been shown to be due to erroneous measurements. [247] 

                

Figure 11. a) Crystal structure of [Mo(CO)2(η3-allyl)(dmpm)(CN)] (82) (Table 7, entry 67); thermal ellipsoids 

are drawn at 30% probability. Selected bond lengths (Å); C1–Mo  2.393, C2–Mo  2.386, C3–Mo  2.459, P1–Mo  

2.501,  P2–Mo  2.504; and angles (deg.);       C1‒C2‒C3  122.62,       P1‒Mo‒P2  68.16. [214] b) Crystal structure of 

[W(CO)2(η3-allyl)(dmpm)(C≡CPh)] (83) (Table 7, entry 68); thermal ellipsoids are drawn at 30% probability. 

Selected bond lengths (Å); C1–W  2.393, C2–W  2.304, C3–W  2.338, P1–W  2.450,  P2–W  2.462 ; and angles 

(deg.);       C1‒C2‒C3  153.42,       P1‒W‒P2  67.20. (Redrawn from ref. [239]). 
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3.3. Monodentate ligands bound to M(CO)2(η
3-allyl)(L⏜L): Reactivity and intermediacy in allylic 

alkylations 

Despite their implicit role as intermediates and transient species in catalytic processes, 

[248,249] as well as their pertinence in biological contexts, [250] relatively few hydroxido (OH), 

alkoxido (OR) and amido (NR2) organometallic complexes of low-valent transition metals have been 

isolated, in contrast to those based on early transition metals in high oxidation states. [251–255] Facile 

decomposition pathways are pervasive in these complexes containing non-dative heteroatomic ligands, 

and their syntheses are typically challenging and not general.  [256] Nevertheless, it is this reactivity 

which makes them interesting. The allyl molybdenum dicarbonyl fragment provides a robust scaffold 

to which a number of non-dative heteroatomic ligands can be introduced, affording the respective 

monomeric complex of the type [Mo(CO)2(η3-allyl)(α-diimine)X] (X = OR, SR, NR2, NCCR2, etc.). 

Their synthesis is straightforward in this instance, involving metathesis of parent chlorido complex 84 

and MX (M = Na, K), as delineated in Scheme 28 for a number of examples. 

 

 

Scheme 28. A substitution reaction installing various non-dative heteroatomic anionic ligands X via metathesis 

of parent chloride complex 84 with the sodium or potassium salts, MX. [187, 190.191, 257] 

 

Amide and alkoxide ligands bound to highly oxidised early transition metals attain appreciable 

π-donation into vacant metal d-orbitals, and the nucleophilic character of the heteroatom is thus 

curtailed. In contrast, their coordination to low-valent metal centres are best described in terms of a 

strongly polarised single M–X bond, where the heteroatom maintains or exhibits enhanced 

nucleophilicity and the metal is rendered more electrophilic in character. The conflict between 
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populated metal dπ orbitals and the π-donor character of the non-dative heteroatomic ligand (the source 

of reactivity), is exacerbated by donating ancillary ligands which serve to increase the electron density 

on the metal. The ambi-electronic nature of these complexes is apparent in their reactivity, and 

characterised by insertion of electrophilic substrates into the M–X bond. The reaction of 85 with carbon 

disulfide (Scheme 29a) proceeds this way via the intermediate shown in Scheme 29d. [190] The 

analogous reaction of 86 with CS2 afforded a new cis-dicarbonyl compound which has thus far eluded 

characterisation, due to its lacking solubility. [186] The latter reaction proceeds faster, presumably on 

account of the difficulty encountered with nucleophilic attack by the sterically hindered NHPh group. 

[190] There is an apparent divergence in reactivity exhibited by corresponding hydroxide complex 87, 

which proceeds further to afford hydrosulfide complex 88, with concomitant loss of carbonyl sulfide 

(Scheme 30) [188]. Tetracyanoethylene (TCNE) has been shown to react with transition metal alkyl 

complexes to form keteniminates as the insertion product, [258] and an analogous reaction is identified 

for amido complex 89 (Scheme 29b). [191] Here, it is suggested that nucleophilic addition to the 

electron-deficient alkene, with subsequent loss of HCN (presumably via an E1cB mechanism), precedes 

a rearrangement as shown in Scheme 29e. Resultant keteniminate complex 90 is not an isolated 

example, since reaction of 84 with K(CH2CN) also yields the respective keteniminate complex with –

N=C=CH2 as the anionic ligand X, [189] in accordance with the metathesis reactions described in 

Scheme 28. It is quite apparent from the aforementioned reactions that the molybdenum centre in 

complexes of this type is somewhat ‘Lewis-hard’ in character, which perhaps makes the reaction of 86 

with dimethylacetylene dicarboxylate (DMAD) quite surprising (Scheme 29c). The rearrangement 

following the initial nucleophilic attack on the DMAD substrate (Scheme 29f), affixes the carbanion of 

the enolate to the metal centre, [257] which is associated with its softer character in comparison with 

the oxygen. It is not apparent whether this is due a suitability in terms of orbital overlap with the metal 

centre and steric restrictions, or indeed impaired resonance because of the allenolate nature of the 

carbanion. Alternatively, it may be envisaged that a stabilising effect is present in the C-coordinated 

structure, involving back donation to the electron poor vinyl moiety and an implicit contribution from 

a carbenoid resonance form. Further reaction of 91 with triflic acid (HOTf) demetallates the vinyl 

moiety to afford the (Z)-alkene and [Mo(CO)2(η3-allyl)(bpy)(OTf)] (92), cf. the hard Lewis acid nature  
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of the metal. In addition, a reaction of molybdenum and tungsten congeners of 84 with the potassium 

enolate of acetophenone results in preferred O-coordination of the enolate in complexes 93 (Scheme 

31). [189] This is in contrast with the coordination of enolate anions at the CpM(CO)3 (M = Mo, W) 

fragment, which are instead bound through the carbon atom. [259,260] It is thus apparent that the 

acceptor properties of the molybdenum or tungsten centres regarding the preference for hard or soft 

Lewis base donors are sensitive to the ancillary ligands constituting the coordination sphere. It is 

perhaps also necessary to consider the steric penalty associated with the C-coordination of enolates (or 

related heteroatom-conjugated carbanions), particularly those that are additionally substituted at the 

coordinated carbon atom.  

 

 

 

 

 

Scheme 29. a) The corresponding reaction of amido complex 85 with carbon disulfide (cf. Scheme 30); an 
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insertion reaction proceeds, via the rearrangement shown in d) as the key step. A similar insertion is illustrated in 

b) with the electron-poor tetracyanoethylene; the rearrangement shown in e) furnishes keteniminate complex 90. 

The analogous insertion reaction of dimethyl acetylenedicarboxylate with the alkoxide complex 86 yields vinyl 

complex 91. 

 

 

Scheme 30. Reaction of hydroxide complex 87 with carbon disulfide to afford corresponding hydrosulfide 

complex 88. [188] 

 

 

Scheme 31. Reaction of 84 with the potassium enolate of acetophenone. [189] 

 

It is appropriate to mention here the early advances in ascertaining the receptivity of these 

complexes towards a nucleophilic attack at the allyl ligand. The contemporary molybdenum-based 

catalyst system for allylic alkylation is now a well-established synthetic tool, achieving high regio- and 

enantioselectivity with a variety of allylic substrates and stabilised carbon nucleophiles. Some 

indications of the mechanism of Mo-catalysed allylic alkylation have emerged, but the details remain 

to be elucidated. Currently used Mo-based catalysts are derived from the original α-diimine or 

diphosphine compounds on which our discussion will focus, together with studies on alkylations using 

non-stabilised carbanions.  For further details see references [144, 145], and [261–265]. The discussion 

regarding allylic alkylations mediated by the complexes [CpM(CO)(NO)(η3-allyl)]+ provides some 

context here (Section 2.5), but there are important mechanistic distinctions to be made concerning the 
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trajectory of the nucleophile. The attack by the nucleophile on the external π-face of the coordinated 

allyl moiety observed in the cyclopentadienyl complexes [109,115] is  likely due to the shielding effect 

of the Cp ligand, discouraging pre-coordination at the metal centre. [266] 

Stoichiometric reactions of the molybdenum complexes [Mo(CO)2(η3-allyl)(L⏜L)X] (L⏜L = 

bpy, dppe) with stabilised carbanion nucleophiles to afford olefins was first reported by Trost and 

Lautens in 1982, [266,267] which was soon developed into a catalytic process employing allylic 

acetates and zerovalent molybdenum precatalysts of the type [Mo(CO)4(L⏜L)] (L⏜L = various α-

diimine and diphosphine bidentate ligands; the hexacarbonyl was also employed as a catalyst 

precursor). [152,266–268] Mo-catalysed allylic alkylation in this iteration generally proceeds with 

overall retention of stereochemistry, like that of the analogous Pd-catalysed reaction. [269,270] 

However, whilst the latter reaction has been shown to operate via a double-inversion mechanism, the 

Mo-catalysed reaction is instead understood to achieve net stereochemical outcome via a double-

retention mechanism. [144–146,148–153,271] Some discussion regarding the retentive oxidative 

addition step to allylic acetates may be found in Section 3.2. The nature of the step involving 

nucleophilic attack on the coordinated allyl moiety, which has also been shown to proceed with 

retention of stereochemistry [271] (though this probably depends on the nature of the nucleophile), 

implies coordination of the nucleophile to the metal centre preceding the formation of an olefinic 

species. Naturally, the necessity of a cis arrangement of the two reacting ligands within the coordination 

sphere is expected, being reminiscent of a rudimentary reductive elimination; this stereochemical 

requirement is delineated by structure D (Chart 10). Indeed, this conjecture is substantiated by the 

reactions of unadorned, non-stabilised carbanions with complexes of the type [M(CO)2(η3-

allyl)(L⏜L)Cl] (M = Mo, W; L⏜L = bpy, phen, dppe), where a clear divergence in reactivity is 

encountered. The reaction of [M(CO)2(η3-allyl)(N⏜N)Cl] (M = Mo, W; N⏜N = bpy, phen) with alkyl 

reagents simply affords the respective metathesis product [M(CO)2(η3-allyl)(N⏜N)R] (94) (Scheme 

32a). [175,177] The strong preference for bpy or phen complexes of this type to adopt structure C in 

the solid state, is maintained with the respective alkyl compounds. However, low-temperature NMR 

spectra demonstrate the lack of an accessible pathway to isomerisation of these complexes from 
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structure C to D in solution, [175] in contrast to halide congeners (Section 3.2). Thus, no alkylation of 

the coordinated allyl moiety is observed in this case. The corresponding diphosphine complexes 

[M(CO)2(η3-allyl)(P⏜P)Cl] (95) instead customarily adopt stereochemistry D, and stereospecific 

substitution of the chloride ligand yields the respective alkyl complex, 96, which initially retains the 

native D stereochemistry of the coordination sphere (Scheme 32b). [240] However, this relatively short-

lived intermediate rapidly isomerises to 96-E,  in which the carbonyl ligands are in mutually trans 

positions (Chart 10). [214] It is from here that a slow intramolecular migration of the ligand R effects 

the allylic alkylation. It is worth noting that the above observations are applicable to complexes with 

the dmpm ligand. Complexes bearing dppm and dppe ligands were not directly studied because of their 

sensitivity and difficulties in obtaining pure samples for characterisation, especially for strongly 

donating organometallic compounds. Thus, it remains unknown whether they have a propensity to 

rearrange to structure E in such a circumstance. [240] It is also not clear whether isomerisation to E is 

a requirement for the intramolecular migration of the C-bound anionic ligand, since in both D and E 

the ligated carbon nucleophile and the allyl ligand are mutually cis; it may simply be that isomerisation 

to the, in this case, more stable E isomer [214] is fast compared to the slow reductive elimination of the 

olefinic product.  
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Scheme 32. Comparison between the reactions of non-stabilised carbanions (R = methyl, ethyl, benzyl) with α-

diimine complexes 94 (M = Mo, W; N⏜N = bpy, phen), and that of the molybdenum and tungsten dmpm 

congeners 95 (Rʹ = Ph, –C≡CPh, 2-furyl, 2-thienyl). C‒C coupling via an intramolecular migration is only 

observed for the latter, while 94 is not able to isomerise such that the coordinated carbanion becomes cis to the 

allyl ligand. [240] 

 

In the case of α-diimine complexes [Mo(CO)2(η3-allyl)(N⏜N)X] (53), retentive allylic 

alkylation is achieved with select nucleophiles. Stabilised carbanions such as those derived from 

malonic esters make suitable candidates, although less reactive examples thereof, such as β-ketoester 

and β-diketone derived anions, exhibit limited efficacy. [261] It appears that the nature of the 

nucleophile is a key controlling the stereochemical outcome. The apparent oxophilicity of the 

molybdenum centre in these complexes mandates the O-coordination of the nucleophile. This 

presumption gets support from the preference for the O-coordination demonstrated by the enolate anion 

of acetophenone in complexes 93 (Scheme 31). This behaviour raises the question as to whether the 

carbon atom, through which the nucleophile reacts, is able to approach the metal centre cis to the 

appropriate allylic terminus, to effect the migration as apparently observed in the aforementioned dmpm 

complexes (vide supra). Alternatively, retentive C‒C coupling may occur within the coordination 

sphere away from the metal centre. The preferred structure C, whereby the anionic ligand (in this case, 
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the nucleophile) and the coordinated allyl moiety are positioned mutually trans, is not conducive to the 

intramolecular migration required to effect the retentive alkylation. In view of the aforementioned, it 

appears that α-diimine complexes with bulky anionic ligands maintain this structure without appreciable 

isomerisation to D. [175] The observation made in Section 3.2 that α-diimine complexes of this type 

bearing anionic ligands such as CF3CO2
– and CF3SO3

– tend to adopt structure D in the solid state (Table 

7), and have also been shown to undergo C ⇌ D interconversion in solution (Section 3.2), [158] is 

particularly enlightening in this context. A common feature amongst these O-coordinated anionic 

ligands is the availability of more than one donor oxygen for coordination to the metal centre. Indeed, 

the aforementioned suitable nucleophiles (e.g., β-diketonates) are no exception. This property suggests 

that C ⇌ D isomerisation occurs via chelation of the anionic ligand through both oxygen atoms, which 

circumvents, in this case, the sterically hindered trigonal twist mechanism. This κ2-O,O chelate in the 

intermediate may be accommodated by either haptotropic η3 ⇌ η1 shift of the allyl ligand, or dissociation 

of one N-donor of the α-diimine ligand. Though not unknown, (particularly for more flexible ligands 

such as bpy and some dab derivatives [272]) such dissociation is uncommon; here it may be favoured 

by the oxophilicity of the Mo centre and the neutralisation of the chelate effect. Salient evidence for the 

lability of the α-diimine ligand with respect to a β-diketonate moiety comes from the observation that 

the bpy ligand in [Mo(CO)2(η3-allyl)(bpy)Cl] (98) is displaced entirely by sodium acetylacetonate (99) 

in the presence of pyridine, to furnish the complex [Mo(CO)2(η3-allyl)(acac)(py)] (100) (Scheme 33). 

[273] The crystal structure of 100 [229], has revealed stereochemistry D. (Note that the descriptors C 

and D relate to the symmetric and asymmetric isomers, respectively, and not strictly to the anionic 

component X that represents in this case a part of the chelating ligand.)  

 

Scheme 33. Reaction of 98 with sodium acetylacetonate (99) in the presence of pyridine, affording complex 100 
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with the chelating bpy ligand entirely substituted by the β-diketonate moiety. [273] 

 

The complete dissociation of the bpy ligand in 98 to form 100 raises the question as to whether 

a species containing a monodentate coordinated nucleophile, or that featuring the κ2-O,O coordinated 

enolate, could be the reactive species. The latter presumably requires a significant puckering of the 

otherwise almost planar moiety, to allow sufficient approach of the reactive carbon to the molybdenum 

centre. This phenomenon is exhibited by one of the β-diketiminate ligands in [Cr(Ph2-nacnac)2Ph] (101) 

(Figure 12a). [274] Here, the α-carbon of the Ph2-nacnac ligand distorts out of the plane to approach the 

vacant coordination site at the chromium centre, though a formal Cr–C bond is not necessarily implied. 

Note that in this circumstance, the coordination mode adopted by Ph2-nacnac is best described as 

tridentate κ3-N,C,N, as opposed to a η5 motif analogous to a pentadienyl moiety. This unusual out-of-

plane bonding presumably results from interactions between the metal and orthogonal ligand π-orbitals 

(Figure 12b). [275] The more frequently encountered κ2-N,N coordination motif exhibited by ligands 

of this type is best described by σ-donation through the in-plane, heteroatom-centred 6a1 and 5b2 

orbitals. A supplementary bonding interaction with the out-of-plane 2b1 orbital, which features a 

significant coefficient at the α-carbon, is accomplished by a puckering of the ligand backbone, at little 

cost to the principal 6a1 and 5b2 σ-interactions. [276] Formally, the ligand becomes a six-electron donor, 

which in the case of [Cr(Ph2-nacnac)2Ph] (101), seems to somewhat quench the apical vacancy left by 

the square-pyramidal geometry about the chromium centre.  
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Figure 12. The unusual geometry of the complex [Cr(Ph2-nacnac)2Ph] (101), [274] where one of the Ph2-nacnac 

ligands is significantly distorted, allowing the α-carbon to approach the metal centre within 2.561 Å. This 

phenomenon is attributed to the supplementary donor interaction to stabilise the coordinatively unsaturated, 

formally Cr(III) centre, by the HOMO of the nacnac ligand (2b1) that features a marked coefficient centred at the 

α-carbon. In this bonding character, the distorted nacnac ligand may be a six-electron donor, as opposed to the 

usual four electron donation, primarily through 6a1 and 5b2, exhibited by the planar nacnac ligand. 

 

Rhodium(I) complex 102 gives some insight into the C‒C coupling induced by the α-carbon of 

the chelated acac ligand (Scheme 34). [277] The carbometalation of the perfluorinated cycloocta-1,5-

diene (1,5-COD-F12) ligand necessarily proceeds on the same face of the trans olefin, as dictated by the 

conformational and steric restraint imposed by the ring. This process demonstrates the feasibility of 

retentive C‒C coupling at the α-carbon of the coordinated enolate nucleophile. Presumably, this reaction 

proceeds from the precursor [Rh(CO)2(acac)] (103), via substitution of a carbonyl ligand with η2-1,5-

COD-F12, followed by concerted 1,4-addition of the bound olefin carbons across the rhodacyclic moiety 

constructed from the acac ligand (TS6). This purported cycloaddition of fluorinated C=C bonds to β-

diketonatometallacycles has also been observed in other systems. [278] The acac distortion mentioned 
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above is required for effective orbital overlap, and the proximity of the α-carbon may allow the metal 

to directly mediate the C‒C coupling. The latter suggestion is consistent with the fact that the relatively 

electron deficient and strained olefin is presumably strongly bound to the metal centre 

(rhodacyclopropane), which is then likely involved in C‒C coupling. A pericyclic construct could also 

describe the mechanism by which allylation of the diketonate moiety occurs in the allylmolybdenum 

systems.  However, in this case, the C‒C bond formation could conceivably occur remotely from the 

metal centre, being reminiscent of a [3,4]-sigmatropic rearrangement (Scheme 35). Some evidence for 

this conjecture comes from computational studies that focused on the coupling of two allyl moieties 

about a palladium(II) centre, where it was ascertained that C‒C coupling through the non-coordinated 

allylic termini in a bis(η1-allyl) species represented the lowest energy pathway. [279] Whereas allylic 

alkylation was reported to eventually proceed for 100, [266] the suggested mechanism illustrated in 

Scheme 35 indicates that 104-D is unreactive. Complex 100 has been shown to exhibit a relatively slow 

equilibrium between two isomers assigned as D (major) and C (minor); [273] this C ⇌ D isomerism 

has been thoroughly discussed in Section 3.2. This phenomenon was also observed in complexes 

[Mo(CO)2(η3-allyl)(acac)L] (104) and attributed to the trigonal twist mechanism (Scheme 25). [279] In 

accordance with this presumption, the analogous complex 105 (Scheme 36), whereby the ligand (L = 

NMe2) is tethered to the allylic moiety, apparently does not undergo allylation of the coordinated acac 

moiety. No reaction is observed even in the presence of the more reactive diethyl malonate. [280] This 

observation is readily explained by the lack of feasible pathway from adopted structure D to C, enforced 

by the allylic tether. Instead, complexes of this type have displayed some preliminary utility in stereo- 

and regioselective reactions with aldehydes to form homoallylic alcohols. [281] 
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Scheme 34. The reaction of rhodium(I)-acac complex 103 with two equivalents of perfluorinated cycloocta-1,5-

diene. The isolated product (102) apparently reveals the η2-coordination of one molecule of 1,5-COD-F12, while 

the other undergoes 1,4-insertion via TS6 into the rhodacycle constructed from the chelating acac moiety. The 

trans stereochemistry of the fluorine substituents is preserved during the apparent [π2 + (σ2 + π2)] cycloaddition. 

[277] 

 

 

Scheme 35. A plausible mechanistic rationale involving a chelating nucleophile that undergoes stoichiometric 

allylic alkylation reactions. This suggested mechanism stipulates the isomersation of 104-D to 104-C, where 104-

D is the structure found in the solid state. The η3 → η1 isomerism of the allyl ligand then provides sufficient orbital 

overlap of the terminal allylic position with the nucleophilic α-carbon of the β-diketonate moiety. Several 

arrangements that acquire this overlap may be envisaged, resulting in the various observed organic products 

encompassing diverse stereo- and regiochemistry. 

 

 

Scheme 36. Under conditions that usually permit allylic alkylation, use of allylic acetates bearing tethered 

functional groups (e.g., L = NMe2) capable of binding to the metal centre, yields complex 105 from parent 

molybdenum hexacarbonyl. The product is reported to be stable towards alkylation of the allylic substrate 

(prolonged heating at 150 °C did not result in any decomposition of 105), even in the presence of the more reactive 

diethyl malonate.  For L = SMe the product is unstable but the nature of the thermal decomposition has not been 

reported. [280] 

 

Alternatively, a similar mechanism to allylic alkylation can be envisaged, involving C‒C 

coupling between the dissociated terminus of the η1-allylic substrate and the nucleophile bound in a 

monodentate fashion (Scheme 37). In this case the chelation of the nucleophile (vide supra) may instead 

simply constitute an intermediate through which C ⇌ D isomerism is executed, in order to place the 

nucleophile cis to the allylic termini. Essentially, there is a requirement for the nucleophile to be 

coordinated cis to the allylic group, and this monodentate arrangement may indeed be achieved from 
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either 104-C or 104-D (Scheme 35). It is reasonable to assume that this pathway is more applicable to 

diphosphine (e.g., dppe, dppm) coordinated precursors, since stereochemistry D is highly favoured in 

this case. In stoichiometric reactions involving, for example, [Mo(CO)2(η3-R-allyl)(dppe)Cl], 

metathesis with the sodium enolate should lead directly to 106-D1 or 106-D2, depending on the 

stereochemistry of the starting material. The conformational freedom of the β-diketonate moiety in the 

monodentate coordination mode seemingly lends itself to more efficient C‒C coupling, since a 

significant rotation of the allyl ligand from its favoured conformation eclipsing the carbonyl ligands 

(Section 3.2), is not required to accompany the η3 → η1 haptotropic shift in the migration towards the 

α-carbon of the nucleophile. Scheme 38 illustrates the difference in stoichiometric allylic alkylations 

mediated by bpy and dppe complexes [Mo(CO)2(η3-crotyl)(L⏜L)Cl] (107 and 108, respectively) with 

regard to the regioselectivity of the reactions, when the sodium salt of 2-carbomethoxycyclopentanone 

is used as a nucleophile. [267] These stoichiometric reactions are markedly improved on addition of 

triphenylphosphine, an observation previously attributed to the displacement of the chloride ligand by 

PPh3 to furnish a cationic adduct [266] that is then more susceptible to an attack by the nucleophile at 

the metal centre. In light of this, the added pyridine in the reaction delineated by Scheme 33 assumes a 

similar role. An additional role of PPh3 in the reaction might be its ability to stabilise the molybdenum(0) 

fragment as a leaving group, on account of its modest π-acceptor properties; this is consistent with the 

reportedly slow progress of the C‒C coupling in 100 (in the absence of PPh3). Perhaps related is the 

requirement of a source of CO in the synchronous Mo-catalysed allylic alkylation reaction; the isolated 

η3-allyl intermediate does not react with nucleophiles without the presence of [Mo(CO)6] or under a CO 

pressure. [262] Here, some attention must be drawn to the discussion in Section 3.2 surrounding the 

mechanism of oxidative addition to allylic substrates. Scheme 24 illustrates a proposed mechanistic 

pathway involving a 7-coordinate, η1-allyl tricarbonyl intermediate; with consideration of the principle 

of microscopic reversibility, perhaps this intermediate could play a role in the latter elementary steps of 

alkylation.  
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Scheme 37. Illustration of the complimentary mechanistic discussion to that presented in Scheme 35, whereby 

the possibility of a reactive species involving monodentate O-coordination of the nucleophile is explored. Steric 

impedance between the allylic substituent (Rʹ) and the cis positioned donor L (such as a pyridyl moiety; see 

Section 4.1), or between the α-substituent on the nucleophile (Rʹʹ) and Rʹ could perhaps be the provenance of the 

remarkable regioselectivity often observed with some catalytic systems, which tellingly varies significantly with 

the nature of the nucleophile, the allylic substrate, and the ligands constituting the coordination sphere of the 

reactive species. [266] 

 

 

Scheme 38. The nature of the bidentate ligand in stoichiometric allylic alkylations has a marked bearing on the 

regiochemical outcome of the reaction. Whilst dppe complex 107 mediates the alkylation exclusively at the 

primary carbon of the η3-crotyl ligand, the corresponding bpy complex (108) enforces very little regioselectivity, 

with all conceivable organic alkylation products observed. [267] 

 

The aforementioned mechanistic discussion stipulates the change in hapticity of the allyl ligand 

from η3 to η1, which has not been reported for α-diimine complexes and only inferred from the slow (R) 
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⇌ (S) interconversion observed in dppe complexes of the type [Mo(CO)2(η3-crotyl)(dppe)Cl] (Scheme 

27). [230]  Indeed, evidence precluding the η3 ⇌ η1 ⇌ η3 isomerism in complexes of this type comes 

largely from variable-temperature NMR studies, for which it is possible that high enough temperatures 

cannot be achieved to view this haptotropic shift on the NMR timescale. The high temperatures and 

long reaction times required for the allylic alkylation in these complexes may thus be attributed to this 

factor. Interestingly, heating the pure syn and anti isomers with respect to the η3-crotyl ligand in 

complexes 79 and 80 (Scheme 26) in refluxing benzene (24 h) did not result in any observed isomerism, 

[158] but the non-coordinating nature of the solvent is also significant.  As was mentioned earlier, the 

only other group of compounds exhibiting the  π ⇌ σ ⇌ π isomerism, are [TpM(CO)2(η3-allyl)] (Tp = 

tris(pyrazolyl)borate and derivatives, M = Mo, W). [70,231,282] Given the similarity of these 

complexes to the cyclopentadienyl congeners (Section 2), which do not undergo this hapticity change, 

it is very difficult to rationalise this observation. However, it has been reported that the methylated 

analogues [TpʹM(CO)2(η3-allyl)] (Tpʹ = hydrotris(3,5-dimethylpyrazolyl)borate) (Chart 3) exhibit a 

lower energy barrier for interconversion than the unsubstituted congeners. [283] In light of this apparent 

steric influence, the added PPh3 may play a role in promoting the η3 → η1 haptotropic shift, since the 

postulated η1-allyl intermediate is a 16 valence electron complex, and the aptitude for complexes of 

Group 6 metals to form sterically crowded, 7-coordinate species is well proven (Section 3.2), including 

those containing PPh3 as a ligand. [284,285] 

 

3.4. Redox Properties and Electrocatalysis  

Potential use as molecular electrocatalysts has provoked fresh interest in the redox chemistry 

of [M(CO)2(η3-allyl)(α-diimine)X] species.  The stability of the cyclopentadienyl complexes towards 

electrochemical and chemical oxidation has already been mentioned (Section 2.4), and largely 

reversible anodic behaviour is also reported for many complexes with chelating donor nitrogen ligands, 

viz. [M(CO)2(η3-allyl)(N⏜N)X] (M = Mo, W; N⏜N = bpy, phen, dpa, 1,4-tBu2-dab; X = Cl, Br, OTf; 

abbreviations refer to Chart 8). [286,287] The stability of the cationic species 

[Mo(CO)2(η3-allyl)(L⏜L)Cl]+ bearing withdrawing diphenyldiphosphine ligands (L⏜L = dppm, dppe) 
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is limited; rapid decomposition of the formally M(III) cations to M(II) tricarbonyl complexes and other 

highly oxidised products has been reported. [286] However, the α-diimine complexes discussed here 

are typified by low-lying LUMOs (SALCs of metal d-, and α-diimine π*-orbitals), which introduces  

low cathodic potentials and relatively thermally stable reduction products. The bonding motif 

encompassing an α-diimine moiety coordinated to a transition metal centre, is also a characteristic 

feature of complexes fac-[M(CO)3(α-diimine)X] (M = Mn, Re; X = various halides or pseudohalides), 

which have been recognised as active electrocatalysts for the reduction of CO2 to CO. [288–294] The 

recent advances made with regard to the Group-7 (Mn, Re) complexes have led to the parallel 

exploration of the electrocatalytic activity exhibited by analogous Group-6 compounds, initially 

encountered for zerovalent Group-6 tetracarbonyl complexes, [M(CO)4(α-diimine)]. [295–298]  

The exploration of catalyst systems that permit a relatively low energy and highly selective 

pathway to the conversion of CO2 to more useful carbon-based species, for use either as fuels (e.g., in 

fuel cells), or as feedstocks for further synthetic transformations, represents one of the most topical and 

challenging pursuits of contemporary chemistry. To this end, homogeneous electrocatalysts based on 

transition metal complexes have much to offer. [299–301] Indeed, a particular advantage in the utility 

of such molecular catalysts lies in the ability to ‘tune’ their performance by appropriate substitution of 

the organometallic scaffold. Expanding the compound range from the M(0) [M(CO)4(α-diimine)] 

species to include the M(II) [M(CO)2(η3-allyl)(α-diimine)X] analogues provides further tuning 

possibilities by variation of  the allyl substituents, through both steric and electronic factors.  Naturally, 

since the coordinated α-diimine is the most electrochemically active part of these complexes, its 

substitution effects the most marked modification to their redox behaviour. [302] Substitution of such 

carbon-based ligand backbones also presents an opportunity for immobilisation of the molecular 

species, [303] or might enable their operation in aqueous media by installation of appropriately 

hydrophilic functional groups. [304] Exploration of the two-electron reduction of CO2 catalysed by 

Group-6 allyl carbonyl complexes is still very much in its infancy, and our discussion is focused on 

tetracarbonyl complexes and Group 7 analogues. Emphasis is placed on analytical methods and 

mechanistic detail. 
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IR carbonyl- and C≡N stretching frequencies are mechanistically particularly informative.  The 

aforementioned anodic behaviour of complexes [M(CO)2(η3-allyl)(L⏜L)X] was monitored by IR 

spectroelectrochemistry, [286] which revealed a marked hypsochromic shift of the two ν(CO) bands, 

consistent with a large metal contribution to the HOMO. [194] Reversible oxidation occurs for 

[Mo(CO)2(η3-allyl)(bpy)(NCS)] (109) at 0.20 V vs. the ferrocene/ferrocenium redox couple (Fc/Fc+) in 

weakly coordinating THF already at ambient temperature, and the cationic product is readily detectable 

by IR spectroscopy (Scheme 39). [194] The cathodic behaviour of 109 is irreversible for the first, 1e– 

reduction at -1.99 V (R1). The rapid dissociation of NCS– from the transient radical anion, [109]•–, 

affords the likewise transient, neutral radical species [110]• that directly reduces at E(R1ʹ) to five-

coordinate [110]–. The anodic counter wave O1ʹ corresponds to the reverse one-electron oxidation of 

[110]–. Anion [110]– reacts further with 109 to yield dimer 111, which converts again to [110]– by 

reduction at -2.52 V (R(D)). This comproportionation ECEC mechanism at the charged cathode is more 

likely than direct dimerisation of [110]•. [305] It should be noted that this may not apply to first row 

transition metals [306] (i.e., Cr), which have lower energy d-orbitals, and the ancillary ligands (i.e., 

substitution at the η3-allylic moiety) should also have some significant impact in this context. The cyclic 

voltammogram of 109 exhibits an additional cathodic wave R2ʹ at -2.82 V, attributed to the largely Mo-

centred one-electron reduction of [110]– to the corresponding dianion. 
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Scheme 39. Cathodic path of [Mo(CO)2(η3-allyl)(bpy)(NCS)] (109) (THF/Bu4NPF6, room temperature). [194] 

 

The cathodic behaviour of 109 is distinctly similar to that of [Mn(CO)3(bpy)Cl], which in 

particular, also features rapid dissociation of the chloride ligand induced by one-electron reduction of 

the bpy ligand [263-265]. [305,306] Dimerisation by the zero-electron comproportionation reaction of 

two-electron-reduced [Mn(CO)3(bpy)]–, (analogous to [110]–) with the parent compound 

[Mn(CO)3(bpy)Cl] was also observed by IR spectroelectrochemistry, [305,306] mimicking the ECEC 

formation of 111 triggered by the one-electron reduction of 109. [194] [Mn(CO)3(bpy)]2 (112) has also 

been chemically generated and structurally characterised by X-ray crystallographic analysis (Scheme 

40a). [306] In addition, iterative chemical reductions of [Re(CO)3(bpy)Cl] have also been reported, 

leading to the isolation and characterisation of [Re(CO)3(bpy)]2 (113), [Re(CO)3(bpy)]2
– (114), and 
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[Re(CO)3(bpy)]– (115); i.e., species analogous to 111, [111]•– and [110]–, respectively (Scheme 40c). 

[307] The eclipsing conformation of the two bpy ligands in 114 is attributed to a π-π stacking 

interaction. [307] Interestingly, the chemically induced dimerisation of [Mo(CO)4(1,4-iPr2-dab)] leads 

to C‒C coupling between the two dab moieties, with two of the nitrogen atoms bridging the 

molybdenum centres in [Mo(CO)3(1,4-iPr2-dab)]2 (116) (Scheme 40b). [308] As an aside, bimetallic 

allylmolybdenum complexes lacking a formal metal-metal bond have been isolated via the 

deprotonation of coordinated pyim (refer to Chart 8) ligands. [159] 

 

  

 

  

Scheme 40. Chemical reduction and subsequent dimerisation of a) [Mn(CO)3(bpy)Br], b) [Mo(CO)4(1,4-iPr2-

dab)], and c) [Re(CO)3(bpy)Cl]. [306-308] 

 

This divergence in reactivity, apparently between the bpy and non-aromatic dab ligands, is not 
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entirely unexpected. An interesting example is provided by the complexes [Mo(CO)2(η3-allyl)(R-

pyamim)(N-R-im)] (117) (R-pyamim = N-substituted 2-pyridylaldimine; N-R-im = N-substituted 

imidazole; refer to Chart 8) (Scheme 41a), [309] and the bpy congener (118) (Scheme 41b), [310] when 

treated with a strong base. Complex 118 is deprotonated by K[N(SiMe3)2] to afford neutral 119; DFT 

studies have suggested that the rearrangement of the N-metallated imidazole complex 118 to the C-

metallated imidazolate complex 119 is mediated by the carbonyl ligands. [310] Following alkylation 

with an alkyl triflate, the cationic N-heterocyclic carbene complex (120) is furnished, with the bpy 

ligand left unperturbed. The same treatment of the Me-pyamim complex (117) affords the C‒C coupled 

product (121), whereby the deprotonated imidazolate moiety has attacked the imine carbon of the N,Nʹ-

chelating ligand. [309] The arrangement of the resulting tridentate ligand here is noteworthy; the pyridyl 

moiety occupies the position trans to the allyl ligand, an arrangement presumably effected by a 

subsequent trigonal twist operation (Section 3.2). Protonation of 121 occurs at the amide nitrogen to 

afford the cationic complex 122. Whereas a reaction entirely analogous to that of 118 is also reported 

for the manganese complex [Mn(CO)3(bpy)(N-R-im)], [311] the rhenium congener [Re(CO)3(bpy)(N-

R-im)] (123) yields the C‒C coupling product (124) upon treatment with a strong base (Scheme 41c). 

[312] However, the C‒C coupling in this case contrasts with that shown in Scheme 41a, in that it occurs 

at the ortho (C6) position of the 2,2ʹ-bipyridine moiety. Further reaction of 124 with one equivalent of 

methyl triflate methylates the nitrogen donor α to the new C‒C bond. The phen analogue of 123 also 

undergoes this initial step, but the bpy complex adds a second equivalent of MeOTf inducing a ring-

opening rearrangement within the tridentate ligand, affording complex 125. Computational studies have 

demonstrated that an analogous C‒C bond formation in the allylmolybdenum bpy complex (118) is a 

marginally less favourable pathway to the observed rearrangement of the imidazole ligand by ca. 14.6 

kJ mol-1. [310] 
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Scheme 41. Divergent behaviour upon treatment of α-diimine complexes 117, 118 and 123 with a strong base, 

followed by protonation/alkylation. R = Me, Mes; Rʹ = H, Me, Et. [309, 311, 312] 

 

 In the two-electron reduction of CO2 to CO, catalysed by allylmolybdenum complexes of this 

type, it is presumed that [110]– is the active species, coinciding with that of the corresponding rhenium 

and manganese catalyst systems. [3,306] This is consistent with the prominent catalytic current seen at 

R(D) (-2.52 V; refer to Scheme 35) in the cyclic voltammogram of 109, recorded in THF saturated with 

CO2. [194] It follows that the formation of  dimer 111, which requires more negative potentials to cleave 

the Mo–Mo bond and regenerate [110]–, is therefore an undesired side reaction. [312] This dimerisation 

is apparently impeded when 109 undergoes reduction in PrCN, as revealed by the almost complete 

disappearance of the cathodic wave R(D); this observation is attributed to stronger coordinating nature 

of PrCN in comparison to THF. [194] Additionally, the examination of the cathodic behaviour of 109 

in PrCN at low temperatures (200 K), or at higher scan rates (2 V s-1) also permits the tentative 
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observation of [109]•–, as well as the doubly reduced species, [109]2– (Ep,c = -2.54 V), which promptly 

dissociates NCS– to form [110]–. There is mounting evidence that the binding of CO2 by the active 

species [110]– is different from that of the equivalent active species in the Group 7 metal catalytic 

systems. The latter are understood to bind CO2 as the C-bound hydroxycarbonyl ligand, [306,313–315] 

protonated in the presence of a Brønsted acid; the observed selectivity over the competitive proton 

reduction is rationalised in terms of a π-interaction with the reduced CO2
– ligand in accompaniment to 

the metal-ligand σ interaction; [290] for details see reference [313].  However, recent studies on 

tetracarbonyl complexes of Group 6 metals have demonstrated the involvement of the diimine ligand 

in the activation of CO2. [296] Treatment of [Mo(CO)4(
iPr2Ph-pymim)] (126) (Scheme 42) with excess 

KC8 yields the dianionic complex [Mo(CO)3(
iPr2Ph-pymim)]2– (127). Subsequent reaction with carbon 

dioxide affords the CO2 adduct 128, for which an X-ray structure has been obtained, as well as NMR 

spectroscopic data. The regiochemistry of the C–C bond formation, as shown in Scheme 42, is 

noteworthy in this case; the reactivity of the imine carbon described in Schemes 40b and 41a is 

enlightening in this context, and DFT studies have demonstrated the predominant coefficient at the 

imine carbon in the HOMO of doubly reduced 127 (which naturally is analogous to the LUMO of 126). 

[296] In light of this, and by comparison to Scheme 41c, one might assume that the regiochemistry of 

C–C bond formation may be different for 2,2′-bipyridines, if this pathway is followed. 

 

  

Scheme 42. The isolation and characterisation of 128, by reduction of the precursor 126 to the dianion 127, 

provides structural evidence for the mechanism by which CO2 is activated in molybdenum tetracarbonyl 
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complexes. [296]  Here, the binding of CO2 at the imine carbon is reminiscent of the regiochemistry of 

intramolecular migration shown in Scheme 41a. 

 

It is quite possible that this mechanism by which CO2 is activated may be applicable to the 

M(II) allyl dicarbonyl complexes, and indeed the formation of the CO2 adduct may be favoured by the 

higher oxidation state metal centre. This is supported by the considerations in Section 3.3 concerning 

coordination by hard Lewis donors. Subsequently, an understanding of the bonding properties amongst 

such complexes of non-dative heteroatomic ligands may provide some valuable insight in this context. 

The allyl ligand, particularly because of its trans position to both the leaving ligand X in the neutral 

precursor complex, and the coordinated oxygen atom in the CO2 adduct, might offer a powerful means 

with which to promote the desired catalytic reaction by appropriate substitution (and indeed impede 

dimerisation; Scheme 39). The mechanism by which CO2 ligates is not clear: e.g., whether the C=O 

bond is activated by O-coordination prior to the C‒C bond formation (involving possibly the imino C), 

or whether a nucleophilic attack at CO2 initiates carboxylate formation. Additionally, the influence of 

the complex isomerism (Section 3.2) has yet to be explored. Whereas the ease of the dissociation of the 

monodentate anionic ligand X upon electrochemical reduction is most likely governed by the aptitude 

of the α-diimine ligand to bear the subsequent negative charge, the difference in steric and electronic 

environment between isomeric forms C and D (Chart 10) may also alter the dissociative nature of X 

(pertinently, the difference between coordinated pyridine ligands cis or trans to the allyl ligand is 

discussed in Section 4.1). In consideration of this, the complex [Mo(CO)2(η3-allyl)(Xyl2-bian)(NCS)] 

(129) provides a fitting comparison to bpy analogue 109, [194] for which the cathodic behaviour has 

already been thoroughly described (vide supra). Little is known regarding the dynamic behaviour in 

solution belonging to such bpy complexes, on account of their generally poor solubility, which impedes 

their characterisation by variable-temperature NMR experiments. [119,121,189,316] (Although, the 

closely related complex [Mo(CO)2(η3-C7H7)(bpy)(NCO)] has been shown to exist exclusively as isomer 

C in solution, aside from a separate fluxionality pertaining to the C7H7 ring. [316]) The solid-state 

structures of 109 and 129, however, clearly show opposing isomeric forms C and D, respectively. 

Moreover, the low-lying empty π* orbitals residing on the Xyl2-bian ligand, because of extended 
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delocalisation over its π-framework, induce more positive reduction potentials and the added spin 

density localised dominantly on the ligand. As a result, the one-electron reduction (R1 at E1/2 = -1.16 V 

vs. Fc/Fc+) to [129]•– is both chemically and electrochemically reversible, and does not result in the loss 

of the monodentate anionic ligand X (Scheme 43). A second electrochemical reduction R2, at -2.09 V, 

affords five-coordinate anionic species [130]–, which then, as a further demonstration of the accepting 

power of the Xyl2-bian ligand, is even able to coordinate THF (analogous to the cathodic behaviour of 

109 in PrCN; vide supra) to form [131]–. [194] 

 

 

Scheme 43. Cathodic path of complex 129. [194] 

 

4. Amidinato and pyrazolato complexes related to [M(CO)2(η3-allyl)(α-diimine)X] 

We now turn from α-diimine complexes with five-membered (e.g., bpy) or six-membered (e.g., 

dpa; see Chart 8) chelate rings to an anionic amidinate ligand forming a four-membered chelate ring.  

The amidinate ligand is best described as a κ2-N,N-bound four-electron donor with primary metal-ligand 

interactions through nitrogen-centred orbitals. [317] Hence, appreciably different bonding properties 

prevail in comparison to π-allyl ligands, which may similarly be considered as four-electron donating 
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anions with a bent triatomic ligand backbone. Notably, numerous examples of complexes 

[CpM(CO)2(amidinate)] have been reported [318–320] where the amidinate ligand directly replaces the 

allyl ligand in [CpM(CO)2(η3-allyl)] (Section 2). In this section, we focus on the relatively new mixed-

ligand complexes [M(CO)2(η3-allyl)(amidinate)L] for which the literature is thus far sparse. Whereas 

the amidinate ligand in this context shares much in common with the previously discussed α-diimine 

ligands, pertaining to the isomerism and dynamic behaviour of such complexes, some interesting 

characteristic features of their reactivity have recently been identified, originating from the inherent 

lability of the neutral monodentate ligand L. Where appropriate, the discussion is expanded to some 

examples of related complexes with pyrazolate ligands, bound typically in a η2-fashion to a M(CO)2(η3-

allyl)L+ fragment through the adjacent nitrogen atoms. Hence, the pyrazolate ligand joins a family of 

anionic four-electron donor ligands bound through two donor heteroatoms, much like acac, nacnac 

(Section 3.3), and amidinate. 

 

4.1. Synthesis and dynamic behaviour 

The first preparation of an amidinato complex based on the M(CO)2(η3-allyl) fragment was 

reported in 2004 by Yamaguchi et al. (Scheme 44a). [224] The bis(amidine) (amidine = N,N'-

diphenylformimidamide, N,N'-di-p-tolylformimidamide) complexes 132 are deprotonated by a strong 

base to afford the respective complexes [Mo(CO)2(η3-allyl)(formamidinate)(amidine)] (133). However, 

this reaction did not proceed for meso-substituted amidine ligands, as well as any tungsten congeners. 

In light of the poor scope concerning this preliminary synthetic route, a superior version was sought. 

The displacement reaction, readily applicable as a route to α-diimine complexes from the 

bis(acetonitrile) precursor 54 (Scheme 16), was not consignable to the analogous reaction with Li 

amidinate salts. However, a slight modification involving bis(pyridine) complex 134 proved successful 

for various substituted amidinate ligands, as well as some congeners of tungsten, affording complexes 

[M(CO)2(η3-allyl)(amidinate)(py)] (135) (Scheme 44b). [321,322] Bis(pyridine) complex 134 was 

hence also used as a precursor in the synthesis of the pyrazolato (pz) complexes 

[M(CO)2(η3-allyl)(ηx-3,5-R2-pz)(py)3-x] (M = Mo, W; R = CF3, x = 1 (136); R = tBu, x = 2 (137)) 
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(Scheme 44c). [322] 

 

  

  

  

Scheme 44. Preparations of amidinato complexes 133 [224], and 135 [321, 322], and pyrazolato complexes 136 

and 127 [322].  

 

The direct metathesis of chlorido precursor 134 with the potassium salt of 3,5-(CF3)2-pz affords 

bis(pyridine) monodentate pyrazolato complex 136, whereby the pyrazolate ligand is unable to displace 

one of the pyridine ligands. Conversely, for the ligand 3,5-tBu2-pz, the presumably relatively weak  

η2-coordination is observed. The crystal structure of molybdenum analogue 137 shows that the axial 

(trans to the allyl ligand) and equatorial M–N bond lengths differ by 0.11 Å (2.120 and 2.230 Å, 

respectively), and the plane of the pyrazolate ring is bent out of the plane of the metal-ligand bond axis. 
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[322] These structural aberrations may however also be explained by steric effects. The apparently weak 

η2-coordition may hence be exploited to facilitate coordination of a useful substrate upon the η2 → η1 

shift of the pyrazolate ligand. The solid-state structure and dynamic behaviour in solution are 

comparable in both pyrazolato complexes. In 136 the monodentate pyrazolate ligand most likely 

occupies an equatorial position at the metal centre, consistent with isomer D (Chart 10).  An X-ray study 

shows a similar structure for η2- pyrazolato complex 137. The 1H NMR spectra of 137 recorded at 

variable temperature reveal fluxionality similar to that of κ2-tpa complex 77 (Section 3.2). Thus, an 

averaged, ostensibly symmetrical resonance pattern at higher temperatures is consistent with the rapid 

interconversion D1 ⇌ D2 (Scheme 25). Below -60 °C, an asymmetric resonance pattern is observed 

belonging to the D1/D2 enantiomeric pair slowly interconverting on the NMR timescale. No evidence 

was found for the existence of structure C. The dynamic behaviour in solution exhibited by 136 is 

almost entirely equivalent to that of 137, with the exception that the barrier to D1 ⇌ D2 interconversion 

is much higher, with sharp asymmetric resonances being observed at up to -20 °C. With regard to 136, 

the absence of structure C in solution highlights the suggestion that pyridine ligands typically prefer to 

occupy the axial site trans to the allyl ligand, as is also documented in Section 3. Table 7 shows a trend 

in which various pyridine complexes all exhibit an isomeric preference in the solid state that places as 

few pyridine ligands as possible in the equatorial plane. This is likely due to the steric presence of ortho-

hydrogens (H2,6) on the coordinated pyridine ring and the subsequent obtrusion with the syn-allylic 

hydrogens, which imposes some restriction to the rotation of the ring about the M–N axis. This is 

particularly well demonstrated by the solution fluxionality of complexes [Mo(CO)2(η3-2-R-

allyl)(py′)2X] (X = Cl, Br, I; R = H, Me; py′ stands for various substituted pyridine moieties), which 

mimics that of 77 and 137. [323] The rate of D1 ⇌ D2 interconversion in these bis(pyridine) complexes 

depends on the anionic ligand in the order Cl > Br > I, and it is further retarded by meso substitution of 

the allyl ligand as in the η3-2-Me-allyl derivative. In addition, the structure of the latter complex also 

restricts the rotation of just one pyridine ligand at low temperatures; logically, the one bound cis to the 

allyl ligand. Such findings indicate that it is sterically less favourable to place a pyridine ligand cis to 

the allyl ligand. It is instructive to note that M‒N(cis-py) bonds are considerably longer in this case 

compared to M‒N(trans-py); viz. 2.346 vs. 2.252 Å, respectively, in 136. [322] Furthermore, it follows 
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that the interconversion of the D1 ⇌ D2 enantiomeric pair via structure C is prohibited; instead, it is the 

less bulky halide ligand which eclipses the allyl ligand on the trigonal twist coordinate. On account of 

the rigidity imposed by the chelation in various related 2,2′-bipyridine complexes and derivatives 

thereof (Section 3), this hindrance with the syn-allyl substituents is alleviated in structure C, but 

significant in structure D, which to some extent explains the reverse isomeric preference, especially in 

the case of 2,9-Me2-phen complex 80 (Section 3.2). This is particularly well demonstrated by the 

solution fluxionality of [Mo(CO)2(η3-allyl)(κ2-O,N-OPPy2Ph)Br] (138) (Scheme 45). [228] It is then 

perhaps unusual that 137 elects to maintain the presumably more sterically unfavourable structure D, 

with no evidence of isomer C, even in solution. (Examples have been reported of mono(pyridine) 

complexes adopting the solid-state structure D, [229,324] but equilibrating with C in solution [273]). 

The isomerism exhibited by 137 is thus likely, for a great deal, due to an electronic effect. 

 

  

Scheme 45. The solution fluxionality of 138 elegantly demonstrates the disfavoured cis arrangement of a 

coordinated pyridyl moiety with respect to the allylic ligand. This is especially so if it is part of a chelate ligand 

structure (e.g., bpy, phen), and thus conformationally constrained to lie orthogonal to the plane delineated by the 

allyl ligand. The resultant steric hindrance between the pyridyl ortho-hydrogens (H2,6) and the syn-allylic 

hydrogens hence precludes the existence of 138-D2 in solution. [228] 

 

Amongst the amidinato complexes 139-141 (Chart 12), markedly different dynamic behaviour 

is observed in solution, despite their outward similarity; they differ only in the N,N- and meso-

substitution of the amidinate moiety, but this seems to acutely change both the thermodynamic and 

kinetic parameters of their C ⇌ D isomerism. Variable-temperature NMR spectra recorded for N-phenyl 

amidinato complex 139 are consistent with rapid C ⇌ D interconversion at 60 °C, resulting in sharp, 

symmetrical allyl proton signals. [321] On cooling, the signals broaden as the C ⇌ D interconversion 
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slows; this process is accompanied by concomitant splitting of the D isomer resonances to an 

asymmetric pattern that remains broad at -60 °C, implying that the kinetics associated with C ⇌ D and 

D1 ⇌ D2 isomerism are comparable (see Section 3.2 for this isomerism in the α-diimine and diphosphine 

families of complexes). In addition, isomer C predominates over D (4:1) in solution, in line with the 

solid-state structure of 139, presumably owing to the bulk of the pyridine ligand. In contrast, isomer C 

is reported to be absent in solution for 140, which bears an N-isopropyl amidinato ligand methylated in 

the meso position. [322] In accordance with the solid-state structure D identified for this complex, the 

high temperature limiting spectrum shows only one set of 1H allyl signals belonging to a rapid D1 ⇌ D2 

interconversion, with the asymmetric spectrum becoming resolved at -40 °C. Essentially, this 

observation demonstrates a slower D1 ⇌ D2 interconversion for 140 compared to 139; the latter, owing 

to the planarity of the aryl substituents, presumably permits a less sterically hindered trigonal twist of 

the L2X component. Most interesting is the consistency of the 1H NMR spectra belonging to N-tbutyl-

meso-methyl amidinato complex 141 measured over the temperature range -80 to 80 °C; the persistent 

resonance pattern is consistent with a symmetrical structure C that remains stereochemically rigid.  

 

  

Chart 12. Complexes [M(CO)2(η3-allyl)(amidinate)(py)], 139-141 (shown generally as 135 in Scheme 44), as 

they appear in their solid-state structures. 

 

Such a contrast to the dynamic behaviour exhibited by 140 is surprising, given the outward 

similarity between the N-substituted iPr and tBu groups, especially with regards to the bonding 

properties of the respective amidinate ligands and, therefore, the electronic stability of the C and D 

isomers. A tentative rationale for the observed fluxionality (or lack thereof) and the isomerism amongst 

complexes 139-141 is based on the effect that the meso-substitution of the amidinate backbone has on 
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the different N-substituents. The crystal structure of 140 shows that the conformation of the amidinate 

N-isopropyl substituents orientates the methine hydrogens syn to the meso-methyl group. The steric 

impedance to the free rotation of the isopropyl substituents, enforced by methylation of the amidinate 

backbone, is apparent in the low-temperature 1H NMR spectra of 140, in which the two CH3 units 

manifest their non-equivalence. [322] As illustrated by 140-C in Chart 13, this orientation destabilises 

the equatorial structure C on account of the steric hindrance between the CH3 units with the syn allyl 

hydrogens. An analogous picture for 141 provides some explanation for the opposing isomeric 

preference; the solid state structures of the related five-coordinate complexes [M(CO)2(η3-allyl)(N,Nʹ-

di-tbutyl-3-methylamidinate)] (M = Mo, W) 142 (Section 4.2; Scheme 47) reveals the gauche 

orientation of the tbutyl CH3 units, such that the steric interaction between the methylated backbone of 

the amidinate ligand and the syn allyl hydrogens is minimised. In structure D, one must bear in mind a 

potential steric interaction in the equatorial plane between the pyridine ligand and the N-substituent of 

the respective amidinate ligand terminus. In 139, the absence of a methyl substituent on the amidinate 

backbone permits the coplanarity of the phenyl rings with the metal-amidinate metallacycle. Clearly  

this conformation is electronically beneficial, and indeed it may alter the metal‒ligand bonding 

properties (and potentially, the relative stabilities of the C and D isomers). However, steric interactions 

with the allyl ligand are also minimised in structure C. While C2-methylated N,Nʹ-diphenyl-3-

methylamidinate congener 143 has not yet been structurally characterised, or studied using variable-

temperature NMR experiments, the room-temperature 1H NMR spectra differs from 139 in that the 

resonance patterns are well resolved. [321] This suggests that C ⇌ D isomerism, which tends to 

manifest itself as broad or averaged signals in the room temperature spectrum (cf. 139, and other 

examples in Section 3.2), is not operant in solution for 143. Whereas there are numerous examples of 

other meso-substituted N,N-di-tbutylamidinate complexes that demonstrate a parallel conformational 

preference in their solid state structures (as shown in Chart 13), [325–327] the aforementioned torsional 

orientations of N-substituents in 139 and 140 are less well enforced amongst analogous complexes in 

the literature, and the steric interaction between the meso substituent and the N-substituents appears to 

be generally weaker than that between the other coordinated ligands. [328–330] Furthermore, the 1H 

NMR spectra recorded for 140 and 141 demonstrate the chemical equivalence of the CH3 units of the 
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iPr and tBu substitutents at room temperature (‘frozen out’ resonances are reported only for 140 at low 

temperatures), indicating that free rotation about the N–C bond is relatively facile, and the 

aforementioned conformational preferences are chiefly solid-state phenomena. Another consideration 

is that structure C for 141 represents a kinetic product from its formation (stereospecific metathesis of 

the parent chloride complex 134 in a similar manner to examples discussed in Section 3.3, preceding 

chelation via displacement of the presumably more labile equatorial pyridine ligand (vide supra) would 

provide a kinetically favourable route to C), which is unable to execute the required trigonal twist as a 

route to isomer D; however, it is difficult to imagine that this should be the case at high temperature, 

given the existence of isomer D for 140. Alternatively, one final suggestion leads conveniently to the 

subject matter of Section 4.2. The C ⇌ D isomerism may be a viable process for 141, with the absence 

of isomer D in the 1H NMR spectra due to it being ‘consumed’. Owing to the probable steric interaction 

of an equatorial pyridine (vide supra), it is conceivable that C ⇌ D isomerism leads to dissociation of 

that ligand to form a five-coordinate, 16 valence electron species 142 (see  Section 4.2) that also exhibits 

a symmetric geometry (Scheme 46). This may explain the reported broad peaks of the allyl protons and 

of the pyridine ortho-H (H2,6), suggesting exchange with free pyridine for 141 and 142. (The H2,6 signal 

is presumably broadened because of the wider shift range in coordinated with respect to free pyridine; 

the reported chemical shifts of H3,5 and H4 match very closely that of free pyridine in toluene-d8 [331]). 

 

  

Chart 13. Purported elements of steric hindrance in selected amidinato complexes, with consideration of the 
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conformations adopted by these complexes in their solid state structures. 

 

  

Scheme 46. Proposed rationale for the absence of 141-D in the variable-temperature 1H NMR spectra of 141. 

 

4.2. Coordinatively unsaturated species and their reactivity 

 Sublimation of 141 affords [M(CO)2(η3-allyl)(N,Nʹ-ditert-butyl-3-methylamidinate)]  (142) in 

low yields as a general route for both molybdenum and tungsten (M) congeners (Scheme 47). [322] The 

formally 16 valence electron, 5-coordinate complex adopts a square pyramidal geometry about the 

metal centre, which, by examination of the crystal structure of 142, is appreciably shielded by the steric 

presence of the N,N-tbutyl groups. In addition, the amidinate ligand bends slightly, such that the meso-

carbon approaches the metal centre. This might suggest that the amidinate ligand distorts to provide an 

additional (weak) bonding interaction,  to somewhat alleviate the electronically unsaturated metal centre 

(cf. the bonding interaction of the nacnac ligand in 101; Section 3.3). The isolation of 142 demonstrates 

clearly the lability of the pyridine ligand in these complexes, and so: a) the complexes 139-141 and 143, 

and other pyridine derivatives, are suitable precursors for pyridine displacement as a route to complexes 

with other monodentate ligands, and b) the C ⇌ D isomerism occurs via 142 (or the respective 

coordinatively unsaturated species corresponding to other complexes [M(CO)2(η3-

allyl)(amidinate)(py)]) in a dissociative process, as opposed to the previously discussed trigonal twist 

mechanism, which is presumably sterically encumbered in this case. Given the prevalence of the 
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trigonal twist for such organometallic compounds, this conjecture is unexpected. However, further 

investigation is required. Assuming the dissociative isomerism permits the intermolecular exchange of 

pyridine ligands, suitable NMR experiments have previously been reported that could elucidate such a 

mechanism. [332] 

 

  

Scheme 47. Preparation of the complexes [M(CO)2(η3-allyl)(N,Nʹ-ditert-butyl-3-methylamidinate)] (M = Mo, W) 

(142).  [322] 

 

 IR and 1H NMR spectra of 139 recorded in acetonitrile, both revealed the dissociation of 

pyridine from the parent compound. [321] Two additional IR ν(CO) absorption bands were identified, 

but their assignment was not aided by the 1H NMR spectrum that exhibited aromatic resonances due to 

free pyridine and broad signals belonging to a metal complex. Since isolation of the new complex was 

unsuccessful, it remains unknown whether the acetonitrile complex [M(CO)2(η3-allyl)(N,Nʹ-

diphenylamidinate)(MeCN)] was formed, or a different species gives rise to the spectra. In either case, 

it is obvious why these amidinato complexes cannot be obtained from the bis(acetonitrile) precursor 

[M(CO)2(η3-allyl)(MeCN)2Cl] (144), in place of 134; [321] presumably, it is the instability of the 

product that precludes this synthetic route, rather than the lability of the precursor. However, the  

reaction of 144 with the potassium salt of 3,5-tbutylpyrazolate affords the dimer 145 with bridging 

pyrazolate ligands (Scheme 48). [322] Variable-temperature 1H NMR spectra of 145 recorded in 

toluene-d8 reveal the presence of two isomers in the ratio 1:4, which remain separate over the 

temperature range of -80 to 80 °C.  The lability of acetonitrile in these complexes is well demonstrated 

here; presumably, the formation of an analogous dimeric complex is feasible in the case of amidinato 
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complex 139, provided the steric bulk around the bridging nitrogen donor does not prohibit the 

dimerisation (presumably the case for 141 because of the isolated five-coordinate species, 142). 

Examples of dimeric complexes with bridging amidinato ligands are readily found in the literature. 

[333–336]  

 

  

Scheme 48. Reaction of complex 144 with the potassium salt of 3,5-tbutylpyrazolate. [322] 

 

Pyridine substitution in these amidinato complexes can lead to stable products. Reaction of 139 

with triethylphosphine readily affords [M(CO)2(η3-allyl)(N,Nʹ-diphenylamidinate)(PEt3)] (146) 

(Scheme 49a). [321] The formation of 146 in this case is confirmed by X-ray crystallography, as well 

as various NMR techniques (the tungsten analogue manifests 1JP,W = 223.3 Hz in the 31P  NMR 

spectrum). It is noteworthy that there is no monodentate phosphine counterpart in the α-

diimine/diphosphine family of complexes (Section 3); attempts to prepare PR3 complexes of this type 

typically result in decomposition [337] (the only pertinent example that has been structurally 

characterised is the cationic complex [Mo(CO)2(η3-2-Me-allyl)(pica)(PPh3)][BAr′4] (pica = 

picolinaldehyde; BAr′4 = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) [209]). Whereas the reaction 

of 139 with trimethylphosphite afforded the stable product [M(CO)2(η3-allyl)(N,N′-

diphenylamidinate){P(OMe)3}] (147) (Scheme 49b) in the case of the tungsten complex, the 

molybdenum congener decomposed, although its spectroscopic characterisation could be accomplished. 

[321] Some insight into the accelerating effect of added triphenylphosphine on the Mo-catalysed allylic 

alkylation reaction (discussed in Section 3.3) may be obtained from the behaviour of 146, 147, and their 

derivatives. It is instructive to note that the decomposition products isolated from the reaction of 144 
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with monodentate phosphines include zerovalent molybdenum species and allylphosphonium chloride 

salts. [337] A similar reaction of 139 with the triethylborane adducts of various N-heterocyclic carbenes 

provides a route to the NHC complexes [M(CO)2(η3-allyl)(N,Nʹ-diphenylamidinate)(NHC)] (M = Mo, 

W; NHC = IMes (148), IiPr (149)) (Scheme 50). [336] N-heterocyclic carbenes as ligands are often 

considered to be close neighbours to phosphine ligands in the context of organometallic chemistry and 

catalysis; [338] however, their bonding properties are generally characterised by stronger donation, 

which is here substantiated by the lower-frequency ν(CO) bands exhibited by 148, compared to 146 

(1906, 1811 vs. 1921, 1836 cm-1, respectively). In line with the solid state structure of 148 and 149, the 

1H NMR spectra recorded over the temperature range of -60 to 80 °C feature a resonance pattern 

consistent with symmetrical isomer C (Chart 10). [336] In the solid-state structures of 148 and 149, the 

orientation of the NHC ligands relative to the metal fragment is invariably such that the plane of the 

imidazole ring lies perpendicular to the molecule’s plane of symmetry. In the limiting low temperature 

1H NMR spectrum of 149, the non-equivalent isopropyl methyl protons are observable at 0.33 and 1.40 

ppm. The appreciable upfield shift of one set of CH3 resonances is presumably due to the influence of 

magnetic anisotropy induced by ring currents about the N-phenyl substituents of the amidinate ligand, 

which is in concurrence to the solid-state structure. At room temperature, the separate iPr-CH3 signals 

have coalesced, but remain broad, and in the limiting high temperature spectrum, a single doublet is 

observed. Since the room-temperature 1H NMR spectrum of 148 manifests sharper averaged signals 

belonging to the 2,6-methyl substituents of the mesityl moieties, the dynamic process responsible for 

these spectroscopic features is most likely a rotation about the M‒NHC bond rather than the N‒Pr or 

N‒Mes bonds, since the latter would be more sterically encumbered for 148. 
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Scheme 49. Pyridine-substitution reactions of amidinato complexes 139 with a/ PEt3 (M = Mo, W), and b/ 

P(OMe)3 (M = Mo). [321] 

 

  

Scheme 50. Pyridine-substitution reactions of amidinato complexes 139 (M = Mo, W) with triethylborane adducts 

of various N-heterocyclic carbenes. [336] 

 

 In accordance with the installation of the monodentate ligands (vide supra), the pyridine ligand 

in 139 is also readily displaced by bidentate ligands, presumably through a coordinatively unsaturated 

intermediate close to 142 (Scheme 42). Reaction of 139 with strongly chelating 1,10-phenanthroline 

(phen) affords the monodentate-amidinato complex [M(CO)2(η3-allyl)(phen)(κ1-N,N-diphenyl-

amidinate)] (M = Mo, W) (150) (Scheme 51). [244] The κ2-coordination mode of the phen ligand is 

endorsed by the rigidity of the ligand backbone, and accommodated by a change in denticity of the 

amidinate ligand, which in its κ1-coordination motif occupies the position trans to the allyl ligand in the 

sold state, as in structure C. The low temperature 1H NMR spectrum recorded for 150 at -40 °C in 

CD2Cl2 displays a well-resolved signal pattern consistent with the solid-state structure. Higher 

temperature spectra, measured in DMSO-d6, exhibited broad peaks from room temperature to ca. 70 

°C, where upon the advent of a new set of sharp signals indicated the formation of N,Nʹ-

diphenylallylamidine, as a result of a coupling reaction between the termini of the allyl and amidinate 

ligands. As discussed in Section 3.3, this coupling reaction necessitates the cis relationship between the 

two reacting ligands, and hence the existence of isomer D (Scheme 51). Interestingly, the coupling 

reaction does not proceed for the tungsten congener, and whilst the allylmolybdenum-2,2′-bipyridine 

analogue to 150 was also prepared in the same manner, its subsequent reactivity and fluxionality were 
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not reported. In the case of the reaction of 139 with dppe under identical ambient experimental 

conditions, dppe-bridged dinuclear complex 151 was isolated (Scheme 52a). [244] Such an observation 

demonstrates the chelating power of the rigid, convergent N-lone pair structures of phen and, to some 

extent, bpy. Under more forcing conditions, the dppe ligand achieves a bidentate coordination mode at 

the expense of a carbonyl ligand in the mononuclear complex [M(CO)(η3-allyl)(N,Nʹ-

diphenylamidinate)(dppe)] (M = Mo, W) (152) (Scheme 52b). Clearly, 152 does not have the 

stereochemical constraints associated with the orientation of the allyl ligand in the dicarbonyl 

complexes explored in Sections 3 and 4 (refer to Section 3.2 for additional discussion). Convincing 

evidence for the existence of two isomers F and F′ (Scheme 52), distinguished by a 180° rotation of the 

allyl ligand (note that the descriptors C and D for symmetric and asymmetric structures, respectively, 

(Chart 10) are not applicable here), is provided by the X-ray structure of 152. In the crystal structure 

the allyl group is disordered, with the meso-carbon appearing in two sites. Such an observation is 

consistent with the two rotamers F and F′, whereby the former predominates (3:1 for M = Mo; 2:1 for 

M = W), which is in agreement with a similar isomerism reported for related monocarbonyl allyl 

molybdenum complexes bearing κ2-(X⏜X) (X = S, N; e.g., dithiocarbamate, dithiophosphate, pyridine-

2-thionate) ligands with allylic backbones; these complexes are beyond of the scope of this review, but 

their resemblance to the amidinato complexes provides some useful insight into the reactivity and 

fluxionality discussed herein. [243,339–342] 
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Scheme 51. Pyridine-substitution reactions of amidinato complexes 139 (M = Mo, W) with 1,10-phenanthroline. 

[244] 

 

 

  

Scheme 52. Pyridine-substitution reactions of amidinato complexes 139 (M = Mo, W) with dppe. [244] 

 

 

5. Summary and outlook 

 There has been much recent interest in allyl carbonyl complexes of the Group-6 metals, 

including numerous studies of their catalytic activity.  This activity has rendered timely an up-to-date 

survey of this large topic, including reactivity, dynamic behaviour, and structural features.  Sections 3 

and 4 have detailed many of the already extensive range of ligands that are found in association with 

the robust M(CO)2(η3-allyl) fragment, and the chemistry of such compounds. No review of such a vital, 

active area could hope to be comprehensive, and indeed many stimulating topics remain to date, 

unexplored. Within this class, compounds incorporating an α-diimine motif have recently aroused great 

interest, not least because of their electrocatalytic activity, and significant role in affecting the cathodic 

behaviour.  The wide range of α-diimine ligands offers much scope for study; while chelating species, 
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on account of their relative kinetic inertness, offer not only the possibility of varying steric and 

electronic factors, but also tethering to immobilised beds through backbone substitution, giving 

potential heterogeneous systems. This is also illustrated by amidinate complexes, where ligand 

backbone substitution has been shown to markedly affect the solution-borne dynamic behaviour 

(Section 4).  The generation of active species in such significant processes as electrocatalytic reduction 

of carbon dioxide, may result from ligand loss, increasing further the interest in α-diimine-containing 

species with electrochemically labile ligands. 

The comparatively inert and frequently non-fluxional parent allyl ligand has been the subject 

of much less structural modification. It has been mentioned above, however, that the presence of 

mesomerically-active allyl substituents is frequently reflected at the metal centre, while sterically 

significant substituents almost invariably affect fluxionality. Further diversity is introduced by the 

incorporation of heteroatoms into the allyl ligand.  While such compounds remain beyond the scope of 

the present article, the interested reader will find notable examples of  such species in the following 

references: η3-azaallyl [58–64], η3-silaallyl [343–345], and silabenzyl [346–349] complexes, while the 

related η3-bound benzyl species are detailed in  [350–357].  The benzyl and related complexes offer an 

alternative route to coordinative unsaturation, via a relatively facile η3 → η1 haptotropic shift. 
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