252 research outputs found

    How a realistic magnetosphere alters the polarizations of surface, fast magnetosonic, and Alfvén waves

    Get PDF
    System-scale magnetohydrodynamic (MHD) waves within Earth's magnetosphere are often understood theoretically using box models. While these have been highly instructive in understanding many fundamental features of the various wave modes present, they neglect the complexities of geospace such as the inhomogeneities and curvilinear geometries present. Here, we show global MHD simulations of resonant waves impulsively excited by a solar wind pressure pulse. Although many aspects of the surface, fast magnetosonic (cavity/waveguide), and Alfvén modes present agree with the box and axially symmetric dipole models, we find some predictions for large-scale waves are significantly altered in a realistic magnetosphere. The radial ordering of fast mode turning points and Alfvén resonant locations may be reversed even with monotonic wave speeds. Additional nodes along field lines that are not present in the displacement/velocity occur in both the perpendicular and compressional components of the magnetic field. Close to the magnetopause, the perpendicular oscillations of the magnetic field have the opposite handedness to the velocity. Finally, widely used detection techniques for standing waves, both across and along the field, can fail to identify their presence. We explain how all these features arise from the MHD equations when accounting for a non-uniform background field and propose modified methods that might be applied to spacecraft observations

    Magnetosonic ULF waves with anomalous plasma - magnetic field correlations: standing waves and inhomogeneous plasmas

    Get PDF
    Ultra-low frequency (ULF) wave observations across the heliosphere often rely on the sign of correlations between plasma (density/pressure) and magnetic field perturbations to distinguish between fast and slow magnetosonic modes. However, the assumptions behind this magnetohydrodynamic result are not always valid, particularly within the magnetosphere which is inhomogeneous and supports standing waves along the geomagnetic field. Through theory and a global simulation, we find both effects can result in anomalous plasma–magnetic field correlations. The interference pattern in standing waves can lead both body and surface magnetosonic waves to have different cross-phases than their constituent propagating waves. Furthermore, if the scale of gradients in the background are shorter than the wavelength or the waves are near-incompressible, then advection by the wave of inhomogeneities can overcome the wave's inherent sense of compression. These effects need to be allowed for and taken into account when applying the typical diagnostic to observations

    How a realistic magnetosphere alters the polarizations of surface, fast magnetosonic, and Alfvén waves

    Get PDF
    Funding: MOA holds a UKRI (STFC / EPSRC) Stephen Hawking Fellowship EP/T01735X/1. DJS was supported by STFC grant ST/S000364/1. MDH was supported by NASA grant 80NSSC19K0127. A.N.W. was partially funded by STFC grant ST/N000609/1.System-scale magnetohydrodynamic (MHD) waves within Earth?s magnetosphere are often understood theoretically using box models. While these have been highly instructive in understanding many fundamental features of the various wave modes present, they neglect the complexities of geospace such as the inhomogeneities and curvilinear geometries present. Here we show global MHD simulations of resonant waves impulsively-excited by a solar wind pressure pulse. Although many aspects of the surface, fast magnetosonic (cavity/waveguide), and Alfvén modes present agree with the box and axially symmetric dipole models, we find some predictions for large-scale waves are significantly altered in a realistic magnetosphere. The radial ordering of fast mode turning points and Alfvén resonant locations may be reversed even with monotonic wave speeds. Additional nodes along field lines that are not present in the displacement/velocity occur in both the perpendicular and compressional components of the magnetic field. Close to the magnetopause the perpendicular oscillations of the magnetic field have the opposite handedness to the velocity. Finally, widely-used detection techniques for standing waves, both across and along the field, can fail to identify their presence. We explain how all these features arise from the MHD equations when accounting for a non-uniform background field and propose modified methods which might be applied to spacecraft observations.Publisher PDFPeer reviewe

    Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101878/1/pdfexplain.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101878/2/jgra50591.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/101878/3/pdfexplain.tx

    Phonon-Metamorphosis in Ferromagnetic Manganite Films: Probing the Evolution of an Inhomogeneous State

    Get PDF
    The analysis of phonon anomalies provides valuable information about the cooperative dynamics of lattice, spin and charge degrees of freedom. Significant is the anomalous temperature dependence of the external modes observed in La2/3_{2/3}Sr1/3_{1/3}MnO3_{3} (LSMO) films. The two external modes merge close to the ferromagnetic to paramagnetic transition at TCT_C and, moreover, two new modes evolve in this temperature range with strong resonances at slightly higher frequencies. We propose that this observed phonon metamorphosis probes the inhomogeneous Jahn-Teller distortion, manifest on the temperature scale TCT_C. The analysis is based on the first observation of all eight phonon modes in the metallic phase of LSMO and on susceptibility measurements which identify a Griffiths-like phase.Comment: 4 pages, 4 figure

    Whole-genome characterisation of ESBL-producing E. coli isolated from drinking water and dog faeces from rural Andean households in Peru

    Get PDF
    E. coli that produce extended-spectrum beta-lactamases (ESBLs) are major multidrug-resistant bacteria. In Peru, only a few reports have characterised the whole genome of ESBL enterobacteria. We aimed to confirm the identity and antimicrobial resistance (AMR) profile of two ESBL isolates from dog faeces and drinking water of rural Andean households and determine serotype, phylogroup, sequence type (ST)/clonal complex (CC), pathogenicity, virulence genes, ESBL genes, and their plasmids. To confirm the identity and AMR profiles, we used the VITEK((R))2 system. Whole-genome sequencing (WGS) and bioinformatics analysis were performed subsequently. Both isolates were identified as E. coli, with serotypes -:H46 and O9:H10, phylogroups E and A, and ST/CC 5259/- and 227/10, respectively. The isolates were ESBL-producing, carbapenem-resistant, and not harbouring carbapenemase-encoding genes. Isolate 1143 ST5259 harboured the astA gene, encoding the EAST1 heat-stable toxin. Both genomes carried ESBL genes (blaEC-15, blaCTX-M-8, and blaCTX-M-55). Nine plasmids were detected, namely IncR, IncFIC(FII), IncI, IncFIB(AP001918), Col(pHAD28), IncFII, IncFII(pHN7A8), IncI1, and IncFIB(AP001918). Finding these potentially pathogenic bacteria is worrisome given their sources and highlights the importance of One-Health research efforts in remote Andean communities

    Antimicrobial resistance in rural settings in Latin America: a scoping review with a One Health lens

    Get PDF
    Antimicrobial resistance (AMR) in rural Latin America is not fully understood. The transmission pathways are partially known since research predominantly focuses on the urban hospital setting. The contribution to AMR from environmental factors is usually only mentioned in large-scale animal production. To understand the state of the literature on AMR in rural LA, we carried out a scoping review using the One Health (OH) perspective. OH recognises the concomitant contributions and interconnectedness of humans, animal, and the environment, thus, we used the OH perspective to select those articles adopting a holistic view of the problem. We searched original articles in English, Spanish, and Portuguese in four peer-reviewed databases and included 21 publications in the analysis. We charted data on bibliometrics, design, data collection sources, and instruments. We identified the human, animal, and environmental contributions to AMR in rural locations, and information gaps on AMR transmission routes and AMR drivers. Intensive and non-intensive animal production systems and agricultural practices were the most frequently found human contributions to AMR. Poultry, swine, cattle, and fish were the most frequent livestock mentioned as sources of AMR bacteria. Animal carriage and/or transfer of AMR determinants or bacteria was recognised as the primary contribution of livestock to the problem, while water, soil, and farming were predominant environmental contributions. We found that only 1 article out of 21 considered the OH approach as a framework for their sampling scheme, whereas 5 out 21 discussed all the three OH components. There were hardly any descriptions of humans or human waste as reservoirs for AMR in rural locations, and rural health centres or hospitals and wildlife were not represented. No studies identified mining as an anthropogenic activity driving AMR. More OH-oriented studies, with emphasis on molecular approaches-for identification and comparison of AMR genes-are sorely needed to understand better the existence of a network of interconnected transmission routes in rural Latin America and provide efficient strategies to prevent further AMR emergence
    • 

    corecore