1,488 research outputs found
Hydrodynamic interactions in active colloidal crystal microrheology
In dense colloids it is commonly assumed that hydrodynamic interactions do
not play a role. However, a found theoretical quantification is often missing.
We present computer simulations that are motivated by experiments where a large
colloidal particle is dragged through a colloidal crystal. To qualify the
influence of long-ranged hydrodynamics, we model the setup by conventional
Langevin dynamics simulations and by an improved scheme with limited
hydrodynamic interactions. This scheme significantly improves our results and
allows to show that hydrodynamics strongly impacts on the development of
defects, the crystal regeneration as well as on the jamming behavior.Comment: 5 pages, 4 figure
Mesoscopic simulation of diffusive contaminant spreading in gas flows at low pressure
Many modern production and measurement facilities incorporate multiphase
systems at low pressures. In this region of flows at small, non-zero Knudsen-
and low Mach numbers the classical mesoscopic Monte Carlo methods become
increasingly numerically costly. To increase the numerical efficiency of
simulations hybrid models are promising. In this contribution, we propose a
novel efficient simulation approach for the simulation of two phase flows with
a large concentration imbalance in a low pressure environment in the low
intermediate Knudsen regime. Our hybrid model comprises a lattice-Boltzmann
method corrected for the lower intermediate Kn regime proposed by Zhang et al.
for the simulation of an ambient flow field. A coupled event-driven
Monte-Carlo-style Boltzmann solver is employed to describe particles of a
second species of low concentration. In order to evaluate the model, standard
diffusivity and diffusion advection systems are considered.Comment: 9 pages, 8 figure
Simulations of slip flow on nanobubble-laden surfaces
On microstructured hydrophobic surfaces, geometrical patterns may lead to the
appearance of a superhydrophobic state, where gas bubbles at the surface can
have a strong impact on the fluid flow along such surfaces. In particular, they
can strongly influence a detected slip at the surface. We present two-phase
lattice Boltzmann simulations of a flow over structured surfaces with attached
gas bubbles and demonstrate how the detected slip depends on the pattern
geometry, the bulk pressure, or the shear rate. Since a large slip leads to
reduced friction, our results allow to assist in the optimization of
microchannel flows for large throughput.Comment: 22 pages, 12 figure
Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann
On-site boundary conditions are often desired for lattice Boltzmann
simulations of fluid flow in complex geometries such as porous media or
microfluidic devices. The possibility to specify the exact position of the
boundary, independent of other simulation parameters, simplifies the analysis
of the system. For practical applications it should allow to freely specify the
direction of the flux, and it should be straight forward to implement in three
dimensions. Furthermore, especially for parallelized solvers it is of great
advantage if the boundary condition can be applied locally, involving only
information available on the current lattice site. We meet this need by
describing in detail how to transfer the approach suggested by Zou and He to a
D3Q19 lattice. The boundary condition acts locally, is independent of the
details of the relaxation process during collision and contains no artificial
slip. In particular, the case of an on-site no-slip boundary condition is
naturally included. We test the boundary condition in several setups and
confirm that it is capable to accurately model the velocity field up to second
order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio
Order-disorder transition in nanoscopic semiconductor quantum rings
Using the path integral Monte Carlo technique we show that semiconductor
quantum rings with up to six electrons exhibit a temperature, ring diameter,
and particle number dependent transition between spin ordered and disordered
Wigner crystals. Due to the small number of particles the transition extends
over a broad temperature range and is clearly identifiable from the electron
pair correlation functions.Comment: 4 pages, 5 figures, For recent information on physics of small
systems see http://www.smallsystems.d
Strain gage Patent Application
Strain gage for detecting and measuring mechanical strain in thermally strained specimen
Penning traps with unitary architecture for storage of highly charged ions
Penning traps are made extremely compact by embedding rare-earth permanent
magnets in the electrode structure. Axially-oriented NdFeB magnets are used in
unitary architectures that couple the electric and magnetic components into an
integrated structure. We have constructed a two- magnet Penning trap with
radial access to enable the use of laser or atomic beams, as well as the
collection of light. An experimental apparatus equipped with ion optics is
installed at the NIST electron beam ion trap (EBIT) facility, constrained to
fit within 1 meter at the end of a horizontal beamline for transporting highly
charged ions. Highly charged ions of neon and argon, extracted with initial
energies up to 4000 eV per unit charge, are captured and stored to study the
confinement properties of a one-magnet trap and a two-magnet trap. Design
considerations and some test results are discussed
Colloids dragged through a polymer solution: experiment, theory and simulation
We present micro-rheological measurments of the drag force on colloids pulled
through a solution of lambda-DNA (used here as a monodisperse model polymer)
with an optical tweezer. The experiments show a violation of the
Stokes-Einstein relation based on the independently measured viscosity of the
DNA solution: the drag force is larger than expected. We attribute this to the
accumulation of DNA infront of the colloid and the reduced DNA density behind
the colloid. This hypothesis is corroborated by a simple drift-diffusion model
for the DNA molecules, which reproduces the experimental data surprisingly
well, as well as by corresponding Brownian dynamics simulations.Comment: 9 pages, 13 figures, 3 table
Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels
Various experiments have found a boundary slip in hydrophobic microchannel
flows, but a consistent understanding of the results is still lacking. While
Molecular Dynamics (MD) simulations cannot reach the low shear rates and large
system sizes of the experiments, it is often impossible to resolve the needed
details with macroscopic approaches. We model the interaction between
hydrophobic channel walls and a fluid by means of a multi-phase lattice
Boltzmann model. Our mesoscopic approach overcomes the limitations of MD
simulations and can reach the small flow velocities of known experiments. We
reproduce results from experiments at small Knudsen numbers and other
simulations, namely an increase of slip with increasing liquid-solid
interactions, the slip being independent of the flow velocity, and a decreasing
slip with increasing bulk pressure. Within our model we develop a semi-analytic
approximation of the dependence of the slip on the pressure.Comment: 7 pages, 4 figure
Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations
During the last decade, lattice-Boltzmann (LB) simulations have been improved
to become an efficient tool for determining the permeability of porous media
samples. However, well known improvements of the original algorithm are often
not implemented. These include for example multirelaxation time schemes or
improved boundary conditions, as well as different possibilities to impose a
pressure gradient. This paper shows that a significant difference of the
calculated permeabilities can be found unless one uses a carefully selected
setup. We present a detailed discussion of possible simulation setups and
quantitative studies of the influence of simulation parameters. We illustrate
our results by applying the algorithm to a Fontainebleau sandstone and by
comparing our benchmark studies to other numerical permeability measurements in
the literature.Comment: 14 pages, 11 figure
- …