2,529 research outputs found

    A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2_2Re2_2O7_7

    Get PDF
    Strong electron interactions can drive metallic systems toward a variety of well-known symmetry-broken phases, but the instabilities of correlated metals with strong spin-orbit coupling have only recently begun to be explored. We uncovered a multipolar nematic phase of matter in the metallic pyrochlore Cd2_2Re2_2O7_7 using spatially resolved second-harmonic optical anisotropy measurements. Like previously discovered electronic nematic phases, this multipolar phase spontaneously breaks rotational symmetry while preserving translational invariance. However, it has the distinguishing property of being odd under spatial inversion, which is allowed only in the presence of spin-orbit coupling. By examining the critical behavior of the multipolar nematic order parameter, we show that it drives the thermal phase transition near 200 kelvin in Cd2_2Re2_2O7_7 and induces a parity-breaking lattice distortion as a secondary order.Comment: 9 pages main text, 4 figures, 10 pages supplementary informatio

    Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system.

    Get PDF
    The photophysics of an amino-styrylbenzene dendrimer (A-DSB) system is probed by time-resolved and steady state luminescence spectroscopy. For two different generations of this dendrimer, steady state absorption, emission, and photoluminescence excitation spectra are reported and show that the efficiency of energy transfer from the dendrons to the core is very close to 100%. Ultrafast time-resolved fluorescence measurements at a range of excitation and detection wavelengths suggest rapid (and hence efficient) energy transfer from the dendron to the core. Ultrafast fluorescence anisotropy decay for different dendrimer generations is described in order to probe the energy migration processes. A femtosecond time-scale fluorescence depolarization was observed with the zero and second generation dendrimers. Energy transfer process from the dendrons to the core can be described by a Förster mechanism (hopping dynamics) while the interbranch interaction in A-DSB core was found to be very strong indicating the crossover to exciton dynamics

    Doping evolution and polar surface reconstruction of the infinite-layer cuprate Sr1x_{1-x}Lax_{x}CuO2_{2}

    Get PDF
    We use angle-resolved photoemission spectroscopy to study the doping evolution of infinite-layer Sr1x_{1-x}Lax_{x}CuO2_{2} thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of the superconducting cuprate parent compounds. As carriers are added to the system, a continuous evolution from charge-transfer insulator to superconductor is observed, with the initial lower Hubbard band pinned well below the Fermi level and the development of a coherent low-energy band with electron doping. This two-component spectral function emphasizes the important role that strong local correlations play even at relatively high doping levels. Electron diffraction probes reveal a p(2×2){p(2\times2)} surface reconstruction of the material at low doping levels. Using a number of simple assumptions, we develop a model of this reconstruction based on the polar nature of the infinite-layer structure. Finally, we provide evidence for a thickness-controlled transition in ultrathin films of SrCuO2_2 grown on nonpolar SrTiO3_3, highlighting the diverse structural changes that can occur in polar complex oxide thin films

    Nodeless superconductivity arising from strong (pi,pi) antiferromagnetism in the infinite-layer electron-doped cuprate Sr1-xLaxCuO2

    Full text link
    The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates

    Tetrahedral Symmetry in Ground- and Low-Lying States of Exotic A ~ 110 Nuclei

    Full text link
    Recent theoretical calculations predict a possible existence of nuclei with tetrahedral symmetry: more precisely, the mean-field hamiltonians of such nuclei are symmetric with respect to double point-group Td. In this paper, we focus on the neutron-rich Zirconium isotopes as an example and present realistic mean-field calculations which predict tetrahedral ground-state configurations in 108,110Zr and low-lying excited states of tetrahedral symmetry in a number of N > 66 isotopes. The motivations for focusing on these nuclei, as well as a discussion of the possible experimental signatures of tetrahedral symmetry are also presented.Comment: Accepted in Phys. Rev. C - Rapid Communication

    Nuclear Tetrahedral Symmetry: Possibly Present Throughout the Periodic Table

    Full text link
    More than half a century after the fundamental, spherical shell structure in nuclei has been established, theoretical predictions indicate that the shell-gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TdDT_d^D ('double-tetrahedral') group of symmetry, exact or approximate. The corresponding strong shell-gap structure is markedly enhanced by the existence of the 4-dimensional irreducible representations of the group in question and consequently it can be seen as a geometrical effect that does not depend on a particular realization of the mean-field. Possibilities of discovering the corresponding symmetry in experiment are discussed.Comment: 4 pages in LaTeX and 4 figures in eps forma

    Probabilistic models of information retrieval based on measuring the divergence from randomness

    Get PDF
    We introduce and create a framework for deriving probabilistic models of Information Retrieval. The models are nonparametric models of IR obtained in the language model approach. We derive term-weighting models by measuring the divergence of the actual term distribution from that obtained under a random process. Among the random processes we study the binomial distribution and Bose--Einstein statistics. We define two types of term frequency normalization for tuning term weights in the document--query matching process. The first normalization assumes that documents have the same length and measures the information gain with the observed term once it has been accepted as a good descriptor of the observed document. The second normalization is related to the document length and to other statistics. These two normalization methods are applied to the basic models in succession to obtain weighting formulae. Results show that our framework produces different nonparametric models forming baseline alternatives to the standard tf-idf model

    Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research

    Get PDF
    Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem
    corecore