2,375 research outputs found

    Widespread gas hydrate instability on the upper U.S. Beaufort margin

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 8594–8609, doi:10.1002/2014JB011290.The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of ~5–7.5 × 103 km2 on the U.S. Beaufort Sea upper slope during the next century.This work was supported by the U.S. Department of Energy (DOE), grant DE-FE0010180 to SMU and a USGS-DOE interagency agreement DE-FE0005806.2015-06-0

    Timing recovery after the cretaceous/paleogene boundary: evidence from Brazos River, Texas

    Get PDF
    As part of an on-going re-assessment of the Cretaceous/ Paleogene boundary in the Brazos River area, Falls County, Texas, a number of new exposures have been described. One of these, at River Bank South, provides a near continuous record of the lowermost Paleocene. It is from this succession that stable isotope analysis of bulk organic matter (δ13C and C/N) and mono-specific samples of the benthic foraminifera Lenticulina rotulata Lamarck (δ18O and δ13C) yields an orbitally-tuned stable isotope record, which allows the timing of events adjacent to the Cretaceous/Paleogene boundary to be determined. Using this cyclicity, it is suggested that the on-set of biotic recovery began ∼40,000 years after the impact (near the base of Zone Pα) and that more significant recovery of planktic foraminifera and calcareous nannofossils began close to the base of Zone P1a, some 85,000–100,000 years post-impact. The data also appear to record the presence of the earliest Paleocene DAN-C2 and Lower C29n hyperthermal events and that these events appear to be an accentuated segment of this orbital cyclicity

    Divergent trophic responses of sympatric penguin species to historic anthropogenic exploitation and recent climate change

    Get PDF
    The Southern Ocean is in an era of significant change. Historic overharvesting of marine mammals and recent climatic warming have cascading impacts on resource availability and, in turn, ecosystem structure and function. We examined trophic responses of sympatric chinstrap (Pygoscelis antarctica) and gentoo (Pygoscelis papua) penguins to nearly 100 y of shared environmental change in the Antarctic Peninsula region using compound-specific stable isotope analyses of museum specimens. A century ago, gentoo penguins fed almost exclusively on low-trophic level prey, such as krill, during the peak of historic overexploitation of marine mammals, which was hypothesized to have resulted in a krill surplus. In the last 40 y, gentoo penguin trophic position has increased a full level as krill declined in response to recent climate change, increased competition from recovering marine mammal populations, and the development of a commercial krill fishery. A shifting isotopic baseline supporting gentoo penguins suggests a concurrent increase in coastal productivity over this time. In contrast, chinstrap penguins exhibited no change in trophic position, despite variation in krill availability over the past century. The specialized foraging niche of chinstrap penguins likely renders them more sensitive to changes in krill availability, relative to gentoo penguins, as evinced by their declining population trends in the Antarctic Peninsula over the past 40 y. Over the next century, similarly divergent trophic and population responses are likely to occur among Antarctic krill predators if climate change and other anthropogenic impacts continue to favor generalist over specialist species

    Cave-adapted evolution in the North American amblyopsid fishes inferred using phylogenomics and geometric morphometrics

    Get PDF
    © 2020 The Authors. Evolution © 2020 The Society for the Study of Evolution. Cave adaptation has evolved repeatedly across the Tree of Life, famously leading to pigmentation and eye degeneration and loss, yet its macroevolutionary implications remain poorly understood. We use the North American amblyopsid fishes, a family spanning a wide degree of cave adaptation, to examine the impact of cave specialization on the modes and tempo of evolution. We reconstruct evolutionary relationships using ultraconserved element loci, estimate the ancestral histories of eye-state, and examine the impact of cave adaptation on body shape evolution. Our phylogenomic analyses provide a well-supported hypothesis for amblyopsid evolutionary relationships. The obligate blind cavefishes form a clade and the cave-facultative eyed spring cavefishes are nested within the obligate cavefishes. Using ancestral state reconstruction, we find support for at least two independent subterranean colonization events within the Amblyopsidae. Eyed and blind fishes have different body shapes, but not different rates of body shape evolution. North American amblyopsids highlight the complex nature of cave-adaptive evolution and the necessity to include multiple lines of evidence to uncover the underlying processes involved in the loss of complex traits

    Papillary thyroid cancer recurrence 43 Years following Total Thyroidectomy and radioactive iodine ablation: A case report

    Get PDF
    Background: Recurrent papillary thyroid carcinoma (PTC) beyond the first two decades of definitive treatment (i.e. total thyroidectomy and radioactive iodine ablation) is a rare occurrence. Case presentation: We present a case of a 71-year old Caucasian female with a distant history of PTC treated with total thyroidectomy and radioactive iodine ablation who experienced recurrence of her disease 43 years following initial diagnosis and definitive treatment. She presented with palpable left-sided neck mass and subsequently underwent a level II, III, neck dissection and adjuvant iodine ablation. This case presents the latest recurrence in papillary thyroid cancer documented to date in the literature. Conclusion: This case exemplifies the need for the head and neck surgeon, radiation oncologist, general practitioner and radiologist to consider new lateral neck mass as late-presenting recurrence of PTC until proven otherwise regardless of low recurrence rates beyond two decades from treatment and low prognostic risk scores

    Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q04027, doi:10.1029/2007GC001876.We report evidence for a global Ti, Ta, and Nb (TITAN) enriched reservoir sampled by ocean island basalts (OIBs) with high 3He/4He ratios, an isotopic signature associated with the deep mantle. Excesses of Ti (and to a lesser degree Nb and Ta) correlate remarkably well with 3He/4He in a data set of global OIBs, demonstrating that a major element signature is associated with the high 3He/4He mantle. Additionally, we find that OIBs with high 3He/4He ratios have moderately radiogenic 187Os/188Os (>0.135). The TITAN enrichment and radiogenic 187Os/188Os in high 3He/4He OIBs indicate that they are melts of a mantle domain that hosts a nonprimitive (nonchondritic) component. The observation of TITAN enrichment in the high 3He/4He mantle may be important in balancing the Earth's budget for the TITAN elements. Understanding the origin of the TITAN enrichment is important for constraining the evolution of the enigmatic high 3He/4He mantle domain.Funds for helium measurements were provided by NSF-OCE to M.D.K. Funds for major and trace element analyses were provided by NSF-EAR 0509891 to S.R.H

    Systematic Definition of Protein Constituents along the Major Polarization Axis Reveals an Adaptive Reuse of the Polarization Machinery in Pheromone-Treated Budding Yeast

    Get PDF
    Polarizing cells extensively restructure cellular components in a spatially and temporally coupledmanner along the major axis of cellular extension. Budding yeast are a useful model of polarized growth, helping to define many molecular components of this conserved process. Besides budding, yeast cells also differentiate upon treatment with pheromone from the opposite mating type, forming a mating projection (the ‘shmoo’) by directional restructuring of the cytoskeleton, localized vesicular transport and overall reorganization of the cytosol. To characterize the proteomic localization changes ac-companying polarized growth, we developed and implemented a novel cell microarray-based imaging assay for measuring the spatial redistribution of a large fraction of the yeast proteome, and applied this assay to identify proteins localized along the mating projection following pheromone treatment. We further trained a machine learning algorithm to refine the cell imaging screen, identifying additional shmoo-localized proteins. In all, we identified 74 proteins that specifically localize to the mating projection, including previously uncharacterized proteins (Ycr043c, Ydr348c, Yer071c, Ymr295c, and Yor304c-a) and known polarization complexes such as the exocyst. Functional analysis of these proteins, coupled with quantitative analysis of individual organelle movements during shmoo formation, suggests a model in which the basic machinery for cell polarization is generally conserved between processe

    Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation

    Get PDF
    Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: −67% vs. −82%, Pi: 353% vs. 534%, pH: −0.22 vs. −0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (−3% and −36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (−15% and −33%), complex II (−36% and −23%), complex I + II (−31% and −20%), and state 3CI+CII control ratio (−24% and −39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response
    • …
    corecore