127 research outputs found

    Phosphoproteomics of retinoblastoma:A pilot study identifies aberrant kinases

    Get PDF
    Retinoblastoma is a malignant tumour of the retina which most often occurs in children. Earlier studies on retinoblastoma have concentrated on the identification of key players in the disease and have not provided information on activated/inhibited signalling pathways. The dysregulation of protein phosphorylation in cancer provides clues about the affected signalling cascades in cancer. Phosphoproteomics is an ideal tool for the study of phosphorylation changes in proteins. Hence, global phosphoproteomics of retinoblastoma (RB) was carried out to identify signalling events associated with this cancer. Over 350 proteins showed differential phosphorylation in RB compared to control retina. Our study identified stress response proteins to be hyperphosphorylated in RB which included H2A histone family member X (H2AFX) and sirtuin 1. In particular, Ser140 of H2AFX also known as gamma-H2AX was found to be hyperphosphorylated in retinoblastoma, which indicated the activation of DNA damage response pathways. We also observed the activation of anti-apoptosis in retinoblastoma compared to control. These observations showed the activation of survival pathways in retinoblastoma. The identification of hyperphosphorylated protein kinases including Bromodomain containing 4 (BRD4), Lysine deficient protein kinase 1 (WNK1), and Cyclin-dependent kinase 1 (CDK1) in RB opens new avenues for the treatment of RB. These kinases can be considered as probable therapeutic targets for RB, as small-molecule inhibitors for some of these kinases are already in clinical trials for the treatment other cancers

    Whole Genome Sequencing of Mycobacterium tuberculosis Clinical Isolates From India Reveals Genetic Heterogeneity and Region-Specific Variations That Might Affect Drug Susceptibility

    Get PDF
    Whole genome sequencing (WGS) of Mycobacterium tuberculosis has been constructive in understanding its evolution, genetic diversity and the mechanisms involved in drug resistance. A large number of sequencing efforts from across the globe have revealed genetic diversity among clinical isolates and the genetic determinants for their resistance to anti-tubercular drugs. Considering the high TB burden in India, the availability of WGS studies is limited. Here we present, WGS results of 200 clinical isolates of M. tuberculosis from North India which are categorized as sensitive to first-line drugs, mono-resistant, multi-drug resistant and pre-extensively drug resistant isolates. WGS revealed that 20% of the isolates were co-infected with M. tuberculosis and non-tuberculous mycobacteria species. We identified 12,802 novel genetic variations in M. tuberculosis isolates including 343 novel SNVs in 38 genes which are known to be associated with drug resistance and are not currently used in the diagnostic kits for detection of drug resistant TB. We also identified M. tuberculosis lineage 3 to be predominant in the northern region of India. Additionally, several novel SNVs, which may potentially confer drug resistance were found to be enriched in the drug resistant isolates sampled. This study highlights the significance of employing WGS in diagnosis and for monitoring further development of MDR-TB strains

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    © 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    A Case of an Infant with Hydrops Fetalis and Hypoxic-Ischemic Encephalopathy Treated with Therapeutic Hypothermia.

    No full text
    Hydrops fetalis (HF) is a serious fetal condition. Infants born with HF are often critically unwell, requiring resuscitation and prolonged intensive care admission. Despite medical advances, morbidity and mortality remain high. Therapeutic hypothermia is the standard of care for term and late preterm infants with moderate-to-severe hypoxic-ischemic encephalopathy (HIE), as it improves neurodevelopmental outcomes in surviving infants. To our knowledge, the use of therapeutic hypothermia has not previously been reported in infants with HF. We report the case of a term infant with undiagnosed HF, who required resuscitation and received 72 hours of therapeutic hypothermia for moderate HIE. We describe the cardiovascular instability encountered during therapeutic hypothermia and how it was successfully managed. She responded well to treatment and was discharged home bottle-feeding, with normal neurology and a normal brain magnetic resonance imaging scan. From this case, therapeutic hypothermia in infants with HF and HIE is feasible and can be beneficial in carefully selected HF infants meeting cooling criteria
    corecore