1,390 research outputs found
One Million Police Hours: Making 440,000 Marijuana Possession Arrests in New York City
A new report released today documents the astonishing number of hours the New York Police Department has spent arresting and processing hundreds of thousands of people for low-level misdemeanor marijuana possession arrests during Mayor Bloomberg's tenure. The report finds that NYPD used approximately 1,000,000 hours of police officer time to make 440,000 marijuana possession arrests over 11 years. These are hours that police officers might have otherwise have spent investigating and solving serious crimes.The report was prepared by Dr. Harry Levine, Professor of Sociology at Queens College and recognized expert on marijuana possession arrests, at the request of members of the New York City Council and the New York State Legislature.Additionally, the report estimates that the people arrested by NYPD for marijuana possession have spent 5,000,000 hours in police custody over the last decade. The report includes a compendium of quotes from academics, journalists, law enforcement professionals and elected officials attesting to the wastefulness, consequences and racial disparities inherent in these arrests
Review of "The Globalisation Of Addiction: A Study In Poverty Of The Spirit" by Bruce K. Alexander
Book review of "The Globalisation Of Addiction: A Study In Poverty Of The Spirit" by Bruce K. Alexande
Detection of bacterial spores with lanthanide-macrocycle binary complexes
The detection of bacterial spores via dipicolinate-triggered lanthanide luminescence has been improved in terms of detection limit, stability, and susceptibility to interferents by use of lanthanide−macrocycle binary complexes. Specifically, we compared the effectiveness of Sm, Eu, Tb, and Dy complexes with the macrocycle 1,4,7,10-tetraazacyclododecane-1,7-diacetate (DO2A) to the corresponding lanthanide aquo ions. The Ln(DO2A)^+ binary complexes bind dipicolinic acid (DPA), a major constituent of bacterial spores, with greater affinity and demonstrate significant improvement in bacterial spore detection. Of the four luminescent lanthanides studied, the terbium complex exhibits the greatest dipicolinate binding affinity (100-fold greater than Tb^(3+) alone, and 10-fold greater than other Ln(DO2A)^+ complexes) and highest quantum yield. Moreover, the inclusion of DO2A extends the pH range over which Tb−DPA coordination is stable, reduces the interference of calcium ions nearly 5-fold, and mitigates phosphate interference 1000-fold compared to free terbium alone. In addition, detection of Bacillus atrophaeus bacterial spores was improved by the use of Tb(DO2A)^+, yielding a 3-fold increase in the signal-to-noise ratio over Tb^(3+). Out of the eight cases investigated, the Tb(DO2A)^+ binary complex is best for the detection of bacterial spores
Cold Matter Assembled Atom-by-Atom
The realization of large-scale fully controllable quantum systems is an
exciting frontier in modern physical science. We use atom-by-atom assembly to
implement a novel platform for the deterministic preparation of regular arrays
of individually controlled cold atoms. In our approach, a measurement and
feedback procedure eliminates the entropy associated with probabilistic trap
occupation and results in defect-free arrays of over 50 atoms in less than 400
ms. The technique is based on fast, real-time control of 100 optical tweezers,
which we use to arrange atoms in desired geometric patterns and to maintain
these configurations by replacing lost atoms with surplus atoms from a
reservoir. This bottom-up approach enables controlled engineering of scalable
many-body systems for quantum information processing, quantum simulations, and
precision measurements.Comment: 12 pages, 9 figures, 3 movies as ancillary file
Recommended from our members
Cellular antiseizure mechanisms of everolimus in pediatric tuberous sclerosis complex, cortical dysplasia, and non-mTOR-mediated etiologies.
The present study was designed to examine the potential cellular antiseizure mechanisms of everolimus, a mechanistic target of rapamycin (mTOR) pathway blocker, in pediatric epilepsy cases. Cortical tissue samples obtained from pediatric patients (n = 11, ages 0.67-6.75 years) undergoing surgical resections for the treatment of their pharmacoresistant epilepsy were examined electrophysiologically in ex vivo slices. The cohort included mTOR-mediated pathologies (tuberous sclerosis complex [TSC] and severe cortical dysplasia [CD]) as well as non-mTOR-mediated pathologies (tumor and perinatal infarct). Bath application of everolimus (2 μm) had practically no effect on spontaneous inhibitory postsynaptic activity. In contrast, long-term application of everolimus reduced spontaneous excitatory postsynaptic activity, burst discharges induced by blockade of γ-aminobutyric acid A (GABAA) receptors, and epileptiform activity generated by 4-aminopyridine, a K+ channel blocker. The antiseizure effects were more pronounced in TSC and CD cases, whereas in non-mTOR-mediated pathologies, the effects were subtle at best. These results support further clinical trials of everolimus in mTOR pathway-mediated pathologies and emphasize that the effects require sustained exposure over time
Probing many-body dynamics on a 51-atom quantum simulator
Controllable, coherent many-body systems can provide insights into the
fundamental properties of quantum matter, enable the realization of new quantum
phases and could ultimately lead to computational systems that outperform
existing computers based on classical approaches. Here we demonstrate a method
for creating controlled many-body quantum matter that combines
deterministically prepared, reconfigurable arrays of individually trapped cold
atoms with strong, coherent interactions enabled by excitation to Rydberg
states. We realize a programmable Ising-type quantum spin model with tunable
interactions and system sizes of up to 51 qubits. Within this model, we observe
phase transitions into spatially ordered states that break various discrete
symmetries, verify the high-fidelity preparation of these states and
investigate the dynamics across the phase transition in large arrays of atoms.
In particular, we observe robust manybody dynamics corresponding to persistent
oscillations of the order after a rapid quantum quench that results from a
sudden transition across the phase boundary. Our method provides a way of
exploring many-body phenomena on a programmable quantum simulator and could
enable realizations of new quantum algorithms.Comment: 17 pages, 13 figure
Activity-Based Cost Management Part I: Applied to Occupational and Environmental Health Organizations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91960/1/Brandt1.pd
Integrating Neural Networks with a Quantum Simulator for State Reconstruction
We demonstrate quantum many-body state reconstruction from experimental data
generated by a programmable quantum simulator, by means of a neural network
model incorporating known experimental errors. Specifically, we extract
restricted Boltzmann machine (RBM) wavefunctions from data produced by a
Rydberg quantum simulator with eight and nine atoms in a single measurement
basis, and apply a novel regularization technique to mitigate the effects of
measurement errors in the training data. Reconstructions of modest complexity
are able to capture one- and two-body observables not accessible to
experimentalists, as well as more sophisticated observables such as the R\'enyi
mutual information. Our results open the door to integration of machine
learning architectures with intermediate-scale quantum hardware.Comment: 15 pages, 13 figure
- …