4,451 research outputs found
Recommended from our members
Eclipse-induced wind changes over the British Isles on the 20 March 2015
The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed
Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity and thickness perception
Thickness perception of starch-thickened products
during eating has been linked to starch viscosity and
salivary amylase activity. Calcium is an essential cofactor
for α-amylase and there is anecdotal evidence that adding
extra calcium affects amylase activity in processes like
mashing of beer. The aims of this paper were to (1) investigate the role of salivary calcium on α-amylase
activity and (2) to measure the effect of calcium concentration on apparent viscosity and thickness perception when interacting with salivary α-amylase in starch-based samples.
α-Amylase activity in saliva samples from 28 people
was assessed using a typical starch pasting cycle (up to 95 °C). The activity of the enzyme (as measured by the change in starch apparent viscosity) was maintained by the presence of calcium, probably by protecting the enzyme from heat denaturation. Enhancement of α-amylase activity by calcium at 37 °C was also observed although to a smaller extent. Sensory analysis showed a general trend of decreased
thickness perception in the presence of calcium, but the result was only significant for one pair of samples, suggesting a limited impact of calcium enhanced enzyme activity on perceived thickness
Reactor mixing angle from hybrid neutrino masses
In terms of its eigenvector decomposition, the neutrino mass matrix (in the
basis where the charged lepton mass matrix is diagonal) can be understood as
originating from a tribimaximal dominant structure with small deviations, as
demanded by data. If neutrino masses originate from at least two different
mechanisms, referred to as "hybrid neutrino masses", the experimentally
observed structure naturally emerges provided one mechanism accounts for the
dominant tribimaximal structure while the other is responsible for the
deviations. We demonstrate the feasibility of this picture in a fairly
model-independent way by using lepton-number-violating effective operators,
whose structure we assume becomes dictated by an underlying flavor
symmetry. We show that if a second mechanism is at work, the requirement of
generating a reactor angle within its experimental range always fixes the solar
and atmospheric angles in agreement with data, in contrast to the case where
the deviations are induced by next-to-leading order effective operators. We
prove this idea is viable by constructing an -based ultraviolet
completion, where the dominant tribimaximal structure arises from the type-I
seesaw while the subleading contribution is determined by either type-II or
type-III seesaw driven by a non-trivial singlet (minimal hybrid model).
After finding general criteria, we identify all the symmetries
capable of producing such -based minimal hybrid models.Comment: 18 pages, 5 figures. v3: section including sum rules added, accepted
by JHE
ERCC1 expression and RAD51B activity correlate with cell cycle response to platinum drug treatment not DNA repair
Background: The H69CIS200 and H69OX400 cell lines are novel models of low-level platinum-drug resistance. Resistance was not associated with increased cellular glutathione or decreased accumulation of platinum, rather the resistant cell lines have a cell cycle alteration allowing them to rapidly proliferate post drug treatment. Results: A decrease in ERCC1 protein expression and an increase in RAD51B foci activity was observed in association with the platinum induced cell cycle arrest but these changes did not correlate with resistance or altered DNA repair capacity. The H69 cells and resistant cell lines have a p53 mutation and consequently decrease expression of p21 in response to platinum drug treatment, promoting progression of the cell cycle instead of increasing p21 to maintain the arrest.
Conclusion: Decreased ERCC1 protein and increased RAD51B foci may in part be mediating the maintenance of the cell cycle arrest in the sensitive cells. Resistance in the H69CIS200 and H69OX400 cells may therefore involve the regulation of ERCC1 and RAD51B independent of their roles in DNA repair. The novel mechanism of platinum resistance in the H69CIS200 and H69OX400 cells demonstrates the multifactorial nature of platinum resistance which can occur independently of alterations in DNA repair capacity and changes in ERCC1
Odour-mediated orientation of beetles is influenced by age, sex and morph
The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies
Investigating Earth's atmospheric electricity: a role model for planetary studies
The historical development of terrestrial atmospheric electricity is described, from its beginnings with the first observations of the potential gradient to the global electric circuit model proposed by C.T.R. Wilson in the early 20th century. The properties of the terrestrial global circuit are summarised. Concepts originally needed to develop the idea of a global circuit are identified as "central tenets", for example, the importance of radio science in establishing the conducting upper layer. The central tenets are distinguished from additional findings that merely corroborate, or are explained by, the global circuit model. Using this analysis it is possible to specify which observations are preferable for detecting global circuits in extraterrestrial atmospheres. Schumann resonances, the extremely low frequency signals generated by excitation of the surface-ionosphere cavity by electrical discharges, are identified as the most useful single measurement of electrical activity in a planetary atmosphere. © 2008 Springer Science+Business Media B.V
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond
The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale
system for solid-state quantum information processing. Its spin-dependent
photoluminescence has enabled sensitive measurements on single N-V centers,
such as: electron spin resonance, Rabi oscillations, single-shot spin readout
and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room
temperature spin coherence times as long as 58 microseconds have been reported
for N-V center ensembles. Here, we have developed an angle-resolved
magneto-photoluminescence microscopy apparatus to investigate the anisotropic
electron spin interactions of single N-V centers at room temperature. We
observe negative peaks in the photoluminescence as a function of both magnetic
field magnitude and angle that are explained by coherent spin precession and
anisotropic relaxation at spin level anti-crossings. In addition, precise field
alignment unmasks the resonant coupling to neighboring dark nitrogen spins that
are not otherwise detected by photoluminescence. The latter results demonstrate
a means of investigating small numbers of dark spins via a single bright spin
under ambient conditions.Comment: 13 pages, 4 figure
Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient
Background: Investigation of the functioning of the brain in living systems
has been a major effort amongst scientists and medical practitioners. Amongst
the various disorder of the brain, epilepsy has drawn the most attention
because this disorder can affect the quality of life of a person. In this paper
we have reinvestigated the EEGs for normal and epileptic patients using
surrogate analysis, probability distribution function and Hurst exponent.
Results: Using random shuffled surrogate analysis, we have obtained some of
the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev
E 2001, 64:061907], for the epileptic patients during seizure. Probability
distribution function shows that the activity of an epileptic brain is
nongaussian in nature. Hurst exponent has been shown to be useful to
characterize a normal and an epileptic brain and it shows that the epileptic
brain is long term anticorrelated whereas, the normal brain is more or less
stochastic. Among all the techniques, used here, Hurst exponent is found very
useful for characterization different cases.
Conclusions: In this article, differences in characteristics for normal
subjects with eyes open and closed, epileptic subjects during seizure and
seizure free intervals have been shown mainly using Hurst exponent. The H shows
that the brain activity of a normal man is uncorrelated in nature whereas,
epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis,
Hurst exponent. 9 page
- …
