1,340 research outputs found
A "superstorm": When moral panic and new risk discourses converge in the media
This is an Author's Accepted Manuscript of an article published in Health, Risk and Society, 15(6), 681-698, 2013, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/13698575.2013.851180.There has been a proliferation of risk discourses in recent decades but studies of these have been polarised, drawing either on moral panic or new risk frameworks to analyse journalistic discourses. This article opens the theoretical possibility that the two may co-exist and converge in the same scare. I do this by bringing together more recent developments in moral panic thesis, with new risk theory and the concept of media logic. I then apply this theoretical approach to an empirical analysis of how and with what consequences moral panic and new risk type discourses converged in the editorials of four newspaper campaigns against GM food policy in Britain in the late 1990s. The article analyses 112 editorials published between January 1998 and December 2000, supplemented with news stories where these were needed for contextual clarity. This analysis shows that not only did this novel food generate intense media and public reactions; these developed in the absence of the type of concrete details journalists usually look for in risk stories. Media logic is important in understanding how journalists were able to engage and hence how a major scare could be constructed around convergent moral panic and new risk type discourses. The result was a media ‘superstorm’ of sustained coverage in which both types of discourse converged in highly emotive mutually reinforcing ways that resonated in a highly sensitised context. The consequence was acute anxiety, social volatility and the potential for the disruption of policy and social change
General boundary conditions for the envelope function in multiband k.p model
We have derived general boundary conditions (BC) for the multiband envelope
functions (which do not contain spurious solutions) in semiconductor
heterostructures with abrupt heterointerfaces. These BC require the
conservation of the probability flux density normal to the interface and
guarantee that the multiband Hamiltonian be self--adjoint. The BC are energy
independent and are characteristic properties of the interface. Calculations
have been performed of the effect of the general BC on the electron energy
levels in a potential well with infinite potential barriers using a coupled two
band model. The connection with other approaches to determining BC for the
envelope function and to the spurious solution problem in the multiband k.p
model are discussed.Comment: 15 pages, 2 figures; to be published in Phys. Rev. B 65, March 15
issue 200
The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations
Long-lived >100 MeV emission has been a common feature of most Fermi-LAT
detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs
080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent
with being produced by synchrotron emission of electrons accelerated to high
energy by the relativistic collisionless shock propagating into the weakly
magnetized medium. Here we show that this high-energy afterglow emission
constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8}
mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than
the previous constraint by X-ray afterglow observations on day scale. This
suggests that the preshock magnetic field is strongly amplified, most likely by
the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte
Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential
We address a two-dimensional nonlinear elliptic problem with a
finite-amplitude periodic potential. For a class of separable symmetric
potentials, we study the bifurcation of the first band gap in the spectrum of
the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to
describe this bifurcation. The coupled-mode equations are derived by the
rigorous analysis based on the Fourier--Bloch decomposition and the Implicit
Function Theorem in the space of bounded continuous functions vanishing at
infinity. Persistence of reversible localized solutions, called gap solitons,
beyond the coupled-mode equations is proved under a non-degeneracy assumption
on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the
coupled-mode equations and convergence of the approximation error is verified.
Error estimates on the time-dependent solutions of the Gross--Pitaevskii
equation and the coupled-mode equations are obtained for a finite-time
interval.Comment: 32 pages, 16 figure
Exact solution for two interacting electrons on artificial atoms and molecules in solids
We present a general scheme for finding the exact eigenstates of two
electrons, with on-site repulsive potentials U_i, on I impurities in a
macroscopic crystal. The model describes impurities in doped semiconductors and
artificial molecules in quantum dots. For quantum dots, the energy cost for
adding two electrons is bounded by the single-electron spectrum, and does not
diverge when U_i approaches infinity, implying limitations on the validity of
the Coulomb blockade picture. Analytic applications on a one-dimensional chain
yield quantum delocalization and magnetic transitions.Comment: 4 pages, 1 figur
Optical spectroscopic study of the interplay of spin and charge in NaV2O5
We investigate the temperature dependent optical properties of NaV2O5, in the
energy range 4meV-4eV. The symmetry of the system is discussed on the basis of
infrared phonon spectra. By analyzing the optically allowed phonons at
temperatures below and above the phase transition, we conclude that a
second-order change to a larger unit cell takes place below 34 K, with a
fluctuation regime extending over a broad temperature range. In the high
temperature undistorted phase, we find good agreement with the recently
proposed centrosymmetric space group Pmmn. On the other hand, the detailed
analysis of the electronic excitations detected in the optical conductivity,
provides direct evidence for a charge disproportionated electronic
ground-state, at least on a locale scale: A consistent interpretation of both
structural and optical conductivity data requires an asymmetrical charge
distribution on each rung, without any long range order. We show that, because
of the locally broken symmetry, spin-flip excitations carry a finite electric
dipole moment, which is responsible for the detection of direct two-magnon
optical absorption processes for E parallel to the a axis. The charged-magnon
model, developed to interpret the optical conductivity of NaV2O5, is described
in detail, and its relevance to other strongly correlated electron systems,
where the interplay of spin and charge plays a crucial role in determining the
low energy electrodynamics, is discussed.Comment: Revtex, 19 pages, 16 postscript pictures embedded in the text,
submitted to PRB. Find more stuff at
http://www.stanford.edu/~damascel/andreaphd.html or
http://www.ub.rug.nl/eldoc/dis/science/a.damascelli
Physical activity monitoring: Addressing the difficulties of accurately detecting slow walking speeds
OBJECTIVE: To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). BACKGROUND: Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. METHODS: A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. RESULTS: Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). CONCLUSIONS: The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
- …
