1,694 research outputs found

    Distinguishing Oceans of Water from Magma on Mini-Neptune K2-18b

    Get PDF
    Mildly irradiated mini-Neptunes have densities potentially consistent with them hosting substantial liquid-water oceans ("Hycean" planets). The presence of CO2 and simultaneous absence of ammonia (NH3) in their atmospheres has been proposed as a fingerprint of such worlds. JWST observations of K2-18b, the archetypal Hycean, have found the presence of CO2 and the depletion of NH3 to 4 μm region, where CO2 and CO features dominate: magma ocean models suggest a systematically lower CO2/CO ratio than estimated from free-chemistry retrieval, indicating that deeper observations of this spectral region may be able to distinguish between oceans of liquid water and magma on mini-Neptunes

    Simulating Quantum Fields with Cavity QED

    Get PDF
    As the realization of a fully operational quantum computer remains distant, quantum simulation, whereby one quantum system is engineered to simulate another, becomes a key goal of great practical importance. Here we report on a variational method exploiting the natural physics of cavity QED architectures to simulate strongly interacting quantum fields. Our scheme is broadly applicable to any architecture involving tunable and strongly nonlinear interactions with light; as an example, we demonstrate that existing cavity devices could simulate models of strongly interacting bosons. The scheme can be extended to simulate systems of entangled multicomponent fields, beyond the reach of existing classical simulation methods.Comment: 4+3 pages, 2 figures, published versio

    Visualizing molecular interactions that determine assembly of a bullet-shaped vesicular stomatitis virus particle

    Get PDF
    Vesicular stomatitis virus (VSV) is a negative-strand RNA virus with a non-segmented genome, closely related to rabies virus. Both have characteristic bullet-like shapes. We report the structure of intact, infectious VSV particles determined by cryogenic electron microscopy. By compensating for polymorphism among viral particles with computational classification, we obtained a reconstruction of the shaft ( trunk ) at 3.5 Å resolution, with lower resolution for the rounded tip. The ribonucleoprotein (RNP), genomic RNA complexed with nucleoprotein (N), curls into a dome-like structure with about eight gradually expanding turns before transitioning into the regular helical trunk. Two layers of matrix (M) protein link the RNP with the membrane. Radial inter-layer subunit contacts are fixed within single RNA-N-M1-M2 modules, but flexible lateral and axial interactions allow assembly of polymorphic virions. Together with published structures of recombinant N in various states, our results suggest a mechanism for membrane-coupled self-assembly of VSV and its relatives

    Association of SNPs in LCP1 and CTIF with hearing in 11 year old children:findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort and the G-EAR consortium

    Get PDF
    BACKGROUND: The genetic basis of hearing loss in humans is relatively poorly understood. In recent years, experimental approaches including laboratory studies of early onset hearing loss in inbred mouse strains, or proteomic analyses of hair cells or hair bundles, have suggested new candidate molecules involved in hearing function. However, the relevance of these genes/gene products to hearing function in humans remains unknown. We investigated whether single nucleotide polymorphisms (SNPs) in the human orthologues of genes of interest arising from the above-mentioned studies correlate with hearing function in children. METHODS: 577 SNPs from 13 genes were each analysed by linear regression against averaged high (3, 4 and 8 kHz) or low frequency (0.5, 1 and 2 kHz) audiometry data from 4970 children in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth-cohort at age eleven years. Genes found to contain SNPs with low p-values were then investigated in 3417 adults in the G-EAR study of hearing. RESULTS: Genotypic data were available in ALSPAC for a total of 577 SNPs from 13 genes of interest. Two SNPs approached sample-wide significance (pre-specified at p = 0.00014): rs12959910 in CBP80/20-dependent translation initiation factor (CTIF) for averaged high frequency hearing (p = 0.00079, β = 0.61 dB per minor allele); and rs10492452 in L-plastin (LCP1) for averaged low frequency hearing (p = 0.00056, β = 0.45 dB). For low frequencies, rs9567638 in LCP1 also enhanced hearing in females (p = 0.0011, β = -1.76 dB; males p = 0.23, β = 0.61 dB, likelihood-ratio test p = 0.006). SNPs in LCP1 and CTIF were then examined against low and high frequency hearing data for adults in G-EAR. Although the ALSPAC results were not replicated, a SNP in LCP1, rs17601960, is in strong LD with rs9967638, and was associated with enhanced low frequency hearing in adult females in G-EAR (p = 0.00084). CONCLUSIONS: There was evidence to suggest that multiple SNPs in CTIF may contribute a small detrimental effect to hearing, and that a sex-specific locus in LCP1 is protective of hearing. No individual SNPs reached sample-wide significance in both ALSPAC and G-EAR. This is the first report of a possible association between LCP1 and hearing function

    Mid-infrared Selection of Active Galactic Nuclei with the Wide-Field Infrared Survey Explorer. I. Characterizing WISE-selected Active Galactic Nuclei in COSMOS

    Get PDF
    The Wide-field Infrared Survey Explorer (WISE) is an extremely capable and efficient black hole finder. We present a simple mid-infrared color criterion, W1 – W2 ≥ 0.8 (i.e., [3.4]–[4.6] ≥0.8, Vega), which identifies 61.9 ± 5.4 active galactic nucleus (AGN) candidates per deg^2 to a depth of W2 ~ 15.0. This implies a much larger census of luminous AGNs than found by typical wide-area surveys, attributable to the fact that mid-infrared selection identifies both unobscured (type 1) and obscured (type 2) AGNs. Optical and soft X-ray surveys alone are highly biased toward only unobscured AGNs, while this simple WISE selection likely identifies even heavily obscured, Compton-thick AGNs. Using deep, public data in the COSMOS field, we explore the properties of WISE-selected AGN candidates. At the mid-infrared depth considered, 160 μJy at 4.6 μm, this simple criterion identifies 78% of Spitzer mid-infrared AGN candidates according to the criteria of Stern et al. and the reliability is 95%. We explore the demographics, multiwavelength properties and redshift distribution of WISE-selected AGN candidates in the COSMOS field

    iPSC-derived liver organoids and inherited bleeding disorders : potential and future perspectives

    Get PDF
    Funding: This work was made possible with funding from the Norwegian Research Council (325869) and the South-Eastern Norway Regional Health Authority (2019071).The bleeding phenotype of hereditary coagulation disorders is caused by the low or undetectable activity of the proteins involved in hemostasis, due to a broad spectrum of genetic alterations. Most of the affected coagulation factors are produced in the liver. Therefore, two-dimensional (2D) cultures of primary human hepatocytes and recombinant overexpression of the factors in non-human cell lines have been primarily used to mimic disease pathogenesis and as a model for innovative therapeutic strategies. However, neither human nor animal cells fully represent the hepatocellular biology and do not harbor the exact genetic background of the patient. As a result, the inability of the current in vitro models in recapitulating the in vivo situation has limited the studies of these inherited coagulation disorders. Induced Pluripotent Stem Cell (iPSC) technology offers a possible solution to overcome these limitations by reprogramming patient somatic cells into an embryonic-like pluripotent state, thus giving the possibility of generating an unlimited number of liver cells needed for modeling or therapeutic purposes. By combining this potential and the recent advances in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology, it allows for the generation of autologous and gene corrected liver cells in the form of three-dimensional (3D) liver organoids. The organoids recapitulate cellular composition and organization of the liver, providing a more physiological model to study the biology of coagulation proteins and modeling hereditary coagulation disorders. This advanced methodology can pave the way for the development of cell-based therapeutic approaches to treat inherited coagulation disorders. In this review we will explore the use of liver organoids as a state-of-the-art methodology for modeling coagulation factors disorders and the possibilities of using organoid technology to treat the disease.Peer reviewe

    Swift Monitoring of M51: A 38 day Superorbital Period for the Pulsar ULX7 and a New Transient Ultraluminous X-Ray Source

    Get PDF
    We present the results from a monitoring campaign made with the Neil Gehrels Swift Observatory of the M51 galaxies, which contain several variable ultraluminous X-ray sources (ULXs). The ongoing campaign started in 2018 May, and we report here on ~1.5 yr of observations. The campaign, which consists of 106 observations, has a typical cadence of 3–6 days, and has the goal of determining the long-term X-ray variability of the ULXs. Two of the most variable sources were ULX7 and ULX8, both of which are known to be powered by neutron stars that are exceeding their isotropic Eddington luminosities by factors of up to 100. This is further evidence that neutron-star-powered ULXs are the most variable. Our two main results are, first, that ULX7 exhibits a periodic flux modulation with a period of 38 days varying over a magnitude and a half in flux from peak to trough. Since the orbital period of the system is known to be 2 days, the modulation is superorbital, which is a near-ubiquitous property of ULX pulsars. Second, we identify a new transient ULX, M51 XT-1, the onset of which occurred during our campaign, reaching a peak luminosity of ~10⁴⁰ erg s⁻¹, before gradually fading over the next ~200 days until it slipped below the detection limit of our observations. Combined with the high-quality Swift/X-ray Telescope lightcurve of the transient, serendipitous observations made with Chandra and XMM-Newton provide insights into the onset and evolution of a likely super-Eddington event

    Swift Monitoring of M51: A 38 day Superorbital Period for the Pulsar ULX7 and a New Transient Ultraluminous X-Ray Source

    Get PDF
    We present the results from a monitoring campaign made with the Neil Gehrels Swift Observatory of the M51 galaxies, which contain several variable ultraluminous X-ray sources (ULXs). The ongoing campaign started in 2018 May, and we report here on ~1.5 yr of observations. The campaign, which consists of 106 observations, has a typical cadence of 3–6 days, and has the goal of determining the long-term X-ray variability of the ULXs. Two of the most variable sources were ULX7 and ULX8, both of which are known to be powered by neutron stars that are exceeding their isotropic Eddington luminosities by factors of up to 100. This is further evidence that neutron-star-powered ULXs are the most variable. Our two main results are, first, that ULX7 exhibits a periodic flux modulation with a period of 38 days varying over a magnitude and a half in flux from peak to trough. Since the orbital period of the system is known to be 2 days, the modulation is superorbital, which is a near-ubiquitous property of ULX pulsars. Second, we identify a new transient ULX, M51 XT-1, the onset of which occurred during our campaign, reaching a peak luminosity of ~10⁴⁰ erg s⁻¹, before gradually fading over the next ~200 days until it slipped below the detection limit of our observations. Combined with the high-quality Swift/X-ray Telescope lightcurve of the transient, serendipitous observations made with Chandra and XMM-Newton provide insights into the onset and evolution of a likely super-Eddington event
    corecore