6,285 research outputs found

    An extension of Kedlaya's algorithm for hyperelliptic curves

    Get PDF
    In this paper we describe a generalisation and adaptation of Kedlaya's algorithm for computing the zeta function of a hyperelliptic curve over a finite field of odd characteristic that the author used for the implementation of the algorithm in the Magma library. We generalise the algorithm to the case of an even degree model. We also analyse the adaptation of working with the xidx/y3x^idx/y^3 rather than the xidx/yx^idx/y differential basis. This basis has the computational advantage of always leading to an integral transformation matrix whereas the latter fails to in small genus cases. There are some theoretical subtleties that arise in the even degree case where the two differential bases actually lead to different redundant eigenvalues that must be discarded.Comment: v3: some minor changes and addition of a reference to a paper by Theo van den Bogaar

    Assessment of the environmental toxicity and carcinogenicity of tungsten-based shot.

    Get PDF
    The toxicity of elemental tungsten released from discharged shot was assessed against previous studies that established a 1% toxic threshold for soil organisms. Extremely heavy theoretical shot loadings of 69,000 shot/ha were used to generate estimated environmental concentrations (EEC) for two brands of tungsten-based shot containing 51% and 95% tungsten. The corresponding tungsten EEC values were 6.5–13.5 mg W/kg soil, far below the 1% toxic threshold. The same shot loading in water produced tungsten EEC values of 2.1–4.4 mg W/L, levels that are not toxic under experimental conditions. Pure tungsten has not been shown to exhibit carcinogenic properties when ingested or embedded in animal tissues, but nickel, with which it is often alloyed, has known carcinogenicity. Given the large number of waterfowl that carry shot embedded in their body, it is advisable to screen lead shot substitutes for their carcinogenic potential through intra-muscular implantation

    Strategies for optimizing plasmonic grating couplers with topology-based inverse design

    Full text link
    Numerical simulations have become a cornerstone technology in the development of nanophotonic devices. Specifically, 3D finite difference time domain (FDTD) simulations are a widely used due to their flexibility and powerful design capabilities. More recently, FDTD simulations in conjunction with a design methodology called inverse design has become a popular way to optimize device topology, reducing a device's footprint and increasing performance. We implement a commercial inverse design tool to generate complex grating couplers and explore a variety of grating coupler design methodologies. We compare the conventionally designed grating couplers to those generated by the inverse design tool. Finally, we discuss the limitations of the inverse design tool and how different design strategies for grating couplers affect inverse design performance, both in terms of computational cost and performance of the resulting device

    Systematic analysis of control panel interfaces using formal tools

    Get PDF
    The paper explores the role that formal modeling may play in aiding the visualization and implementation of usability requirements of a control panel. We propose that this form of analysis should become a systematic and routine aspect of the development Of Such interfaces. We use a notation for describing the interface that is convenient to use by software engineers, and describe a set of tools designed to make the process systematic and exhaustive.We acknowledge with thanks EPSRC grant EP/F01404X/1 and FCT/FEDER grant POSC/EIA/56646/2004. Michael Harrison is grateful to colleagues in the ReSIST NoE (www.resit-noe.org), Jose Campos to Nuno Sousa for work in IVY

    Formal verification of interactive computing systems: Opportunities and challenges

    Get PDF
    Formal verification has the potential to provide a level of evidence based assurance not possible by more traditional development approaches. For this potential to be fulfilled, its integration into existing practices must be achieved. Starting from this premise, the position paper discusses the opportunities created and the challenges faced by the use of formal verification in the analysis of critical interactive computing systems. Three main challenges are discussed: the accessibility of the modelling stage; support for expressing relevant properties; the need to provide analysis results that are comprehensible to a broad range of expertise including software, safety and human factors.This work is financed by the ERDF - European Regional Development Fundthrough the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826

    Utilizing Inverse Design to Create Plasmonic Waveguide Devices

    Get PDF
    In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they suffer from typically having higher loss than silicon photonic devices. Inverse design software can be used to optimize the plasmonic device topology to maximize the device throughput, mitigating the inherent loss of plasmonics. Additionally, inverse design tools can help us make plasmonic devices with an even smaller footprint and higher efficiency than conventionally designed plasmonic devices. Recently, commercial inverse design tools have become available for popular photonic simulation software suites. Using these commercial inverse design tools with a compatible plasmonic architecture, we create compact, efficient, and manufacturable devices such as XOR gates, grating couplers, y-splitters, and waveguide crossings. We compare the inverse-designed devices to conventional devices to characterize the performance of the commercial inverse design tool

    Verification templates for the analysis of user interface software design

    Get PDF
    The paper describes templates for model-based analysis of usability and safety aspects of user interface software design. The templates crystallize general usability principles commonly addressed in user-centred safety requirements, such as the ability to undo user actions, the visibility of operational modes, and the predictability of user interface behavior. These requirements have standard forms across different application domains, and can be instantiated as properties of specific devices. The modeling and analysis process is carried out using the Prototype Verification System (PVS), and is further facilitated by structuring the specification of the device using a format that is designed to be generic across interactive systems. A concrete case study based on a commercial infusion pump is used to illustrate the approach. A detailed presentation of the automated verification process using PVS shows how failed proof attempts provide precise information about problematic user interface software features.This work has been funded by the EPSRC research grant EP/G059063/1: CHI+ MED (Computer-Human Interaction for Medical Devices). We are grateful to Harold Thimbleby's team at Swansea University, part of the CHI+ MED project, and especially Patrick Oladimeji who developed the infusion pump simulation that helped us develop the models. We also thank the anonymous reviewers for valuable feedback. Jose C. Campos and Paolo Masci were funded by project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF)

    Balancing the formal and the informal in user-centred design

    Get PDF
    This paper explores the role of formal methods as part of the user-centred design of interactive systems. An iterative process is described, developing prototypes incrementally, proving user-centred requirements while at the same time evaluating the prototypes that are executable forms of the developed models using ‘traditional’ techniques for user evaluation. A formal analysis complements user evaluations. This approach enriches user-centred design that typically focuses understanding on context and producing sketch designs. These sketches are often non-functional (e.g. paper) prototypes. They provide a means of exploring candidate design possibilities using techniques such as cooperative evaluation. This paper describes a further step in the process using formal analysis techniques. The use of formal methods provides a systematic approach to checking plausibility and consistency during early design stages, while at the same time enabling the generation of executable prototypes. The technique is illustrated through an example based on a pill dispenser.This work is financed by National Funds through the Portuguese funding agency, FCT -- Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020
    • …
    corecore