108,322 research outputs found
Recommended from our members
Automated Design of Tissue Engineering Scaffolds by Advanced CAD
The design of scaffolds with an intricate and controlled internal structure represents a
challenge for Tissue Engineering. Several scaffold manufacturing techniques allow the
creation of complex and random architectures, but have little or no control over geometrical
parameters such as pore size, shape and interconnectivity- things that are essential for tissue
regeneration. The combined use of CAD software and layer manufacturing techniques allow
a high degree of control over those parameters, resulting in reproducible geometrical
architectures. However, the design of the complex and intricate network of channels that are
required in conventional CAD, is extremely time consuming: manually setting thousands of
different geometrical parameters may require several days in which to design the individual
scaffold structures. This research proposes an automated design methodology in order to
overcome those limitations. The combined use of Object Oriented Programming and
advanced CAD software, allows the rapid generation of thousands of different geometrical
elements. Each has a different set of parameters that can be changed by the software, either
randomly or according to a given mathematical formula, so that they match the different
distribution of geometrical elements such as pore size and pore interconnectivity.
This work describes a methodology that has been used to design five cubic scaffolds with
pore size ranging from about 200 to 800 µm, each with an increased complexity of the
internal geometry.Mechanical Engineerin
The Aga Khan University (International) in the United Kingdom Institute for the Study of Muslim Civilisations : recognition scheme for educational oversight : review
Vision-model-based Real-time Localization of Unmanned Aerial Vehicle for Autonomous Structure Inspection under GPS-denied Environment
UAVs have been widely used in visual inspections of buildings, bridges and
other structures. In either outdoor autonomous or semi-autonomous flights
missions strong GPS signal is vital for UAV to locate its own positions.
However, strong GPS signal is not always available, and it can degrade or fully
loss underneath large structures or close to power lines, which can cause
serious control issues or even UAV crashes. Such limitations highly restricted
the applications of UAV as a routine inspection tool in various domains. In
this paper a vision-model-based real-time self-positioning method is proposed
to support autonomous aerial inspection without the need of GPS support.
Compared to other localization methods that requires additional onboard
sensors, the proposed method uses a single camera to continuously estimate the
inflight poses of UAV. Each step of the proposed method is discussed in detail,
and its performance is tested through an indoor test case.Comment: 8 pages, 5 figures, submitted to i3ce 201
Coherent energy migration in solids: Determination of the average coherence length in one‐dimensional systems using tunable dye lasers
The coherent nature of energy propagation in solids at low temperatures was established from the time resolved response of the crystal to short optical pulses obtained from a dye laser (pumped by a nitrogen gas laser). The trapping and detrapping of the energy by shallow defects (x traps) was evident in the spectra and enabled us to extract the coherence length: l≳700 Å=186 molecules for the one‐dimensional triplet excitons of 1,2,4,5‐tetrachlorobenzene crystals at T<4.2° K. This length which clearly exceeds the stochastic random walk limit is related to the thermalization mechanisms in this coupled exciton–trap system, and its magnitude supports the notion that exciton–phonon coupling is responsible for the loss of coherence on very long molecular chains (trap concentration is 1/256 000)
Factors affecting dwell times on digital displaying
A series of exploratory tests were conducted to investigate the effects of advanced display formats and display media on pilot scanning behavior using Langley's oculometer, a desktop flight simulator, a conventional electro-mechanical meter, and various digital displays. The primary task was for the test subject to maintain level flight, on a specific course heading, during moderate turbulence. A secondary task of manually controlling the readout of a display was used to examine the effects of the display format on a subject's scan behavior. Secondary task scan parameters that were evaluated were average dwell time, dwell time histograms, and number of dwells per meter change. The round dial meter demonstrated shorter dwell times and fewer dwells per meter change than the digital displays. The following factors affected digital display scanning behavior: (1) the number of digits; (2) the update rate of the digits; (3) the display media; and (4) the character font. The size of the digits used in these tests (0.28 to 0.50 inches) did not affect scan behavior measures
Summer Ephemeroptera, Plecoptera, and Trichoptera (EPT) Species Richness and Community Structure in the Lower Illinois River Basin of Illinois
Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness is useful for monitoring stream health, but no published studies in Illinois quantitatively document EPT richness or assemblage structure. The objectives of this study were to characterize adult EPT richness and structure and relate these to relative water at eight stream sites (160-69,300 km3 area) in the lower Illinois River Adults were ultra-violet light trapped in June, July, and August 1997. Nutrient enrichment by nitrate and nitrite nitrogen was strongly evident, in smaller drainages, while critical loss of stable habitat was observed in water bodies. Seventy EPT species were identified from 17,889 specimens. Trichoptera were by far the most speciose (41 species), followed by Ephemeroptera (26), and Plecoptera (3). Caddisflies also dominated species richness across sites, contributing 18.0 of the average 28.9 total EPT species collected. Site EPT richness varied significantly (F =5.51, p 0.003, df 7), with smaller drainages supporting greater richness, generally. Differences were also evident for months (F = 21.7, p =0.0001, df =2), with June being lower (11.8 average) than either July (20.6) or August (18.1) values. Hilsenhoff biotic index (HBI) scores did not vary significantly across sites (F 0.7, p =0.7, df =7), but were different across months (F =5.4, p 0.02, df 2). June (4.23) and July (4.53) means were not different, but both were lower (of better quality) than August (5.33) scores. The relationship of EPT to HBI scores was not investigated statisti- cally due to problems of sample size and interdependance of monthly sam ples, but graphical analysis no consistent relationship. This sug- gested a decoupling of the the EPT and implied that the gain in taxonomic resolution achieved by adults outstripped the resolution of the HBI. Use of the HBI to characterize adult aquatic insect communities is discouraged. New state records and extensions for Ephemeroptera and Trichoptera are presented and loss of sensitive Plecoptera in the drainage is discussed
- …
