2,724 research outputs found
Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency
We propose an optical double-cavity resonator whose response to a signal is
similar to that of an Electromagnetically Induced Transparency (EIT) medium. A
combination of such a device with a four-level EIT medium can serve for
achieving large cross-Kerr modulation of a probe field by a signal field. This
would offer the possibility of building a quantum logic gate based on photonic
qubits. We discuss the technical requirements that are necessary for realizing
a probe-photon phase shift of Pi caused by a single-photon signal. The main
difficulty is the requirement of an ultra-low reflectivity beamsplitter and to
operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor
changes in discussion of experimental conditions
Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen
The calculation of the hindered roton-phonon energy levels of a hydrogen
molecule in a confining potential with different symmetries is systematized for
the case when the rotational angular momentum is a good quantum number. One
goal of this program is to interpret the energy-resolved neutron time of flight
spectrum previously obtained for HC. This spectrum gives direct
information on the energy level spectrum of H molecules confined to the
octahedral interstitial sites of solid C. We treat this problem of
coupled translational and orientational degrees of freedom a) by construction
of an effective Hamiltonian to describe the splitting of the manifold of states
characterized by a given value of and having a fixed total number of phonon
excitations, b) by numerical solutions of the coupled translation-rotation
problem on a discrete mesh of points in position space, and c) by a group
theoretical symmetry analysis. Results obtained from these three different
approaches are mutually consistent. The results of our calculations explain
several hitherto uninterpreted aspects of the experimental observations, but
show that a truly satisfactory orientational potential for the interaction of
an H molecule with a surrounding array of C atoms has not yet been
developed.Comment: 53 pages, 9 figures, to appear in Phys. Rev B (in press). Phys. Rev.
B (in press
Nonlinear optics via double dark resonances
Double dark resonances originate from a coherent perturbation of a system
displaying electromagnetically induced transparency. We experimentally show and
theoretically confirm that this leads to the possibility of extremely sharp
resonances prevailing even in the presence of considerable Doppler broadening.
A gas of 87Rb atoms is subjected to a strong drive laser and a weak probe laser
and a radio frequency field, where the magnetic coupling between the Zeeman
levels leads to nonlinear generation of a comb of sidebands.Comment: 6 pages, 9 figure
Efficient Raman Sideband Generation in a Coherent Atomic Medium
We demonstrate the efficient generation of Raman sidebands in a medium
coherently prepared in a dark state by continuous-wave low-intensity laser
radiation. Our experiment is performed in sodium vapor excited in
configuration on the D line by two laser fields of resonant frequencies
and , and probed by a third field .
First-order sidebands for frequencies , and up to the
third-order sidebands for frequency are observed. The generation
starts at a power as low as 10 microwatt for each input field. Dependencies of
the intensities of both input and generated waves on the frequency difference
(), on the frequency and on the optical
density are investigated.Comment: 7 pages, 6 figure
Superluminal optical pulse propagation in nonlinear coherent media
The propagation of light-pulse with negative group-velocity in a nonlinear
medium is studied theoretically. We show that the necessary conditions for
these effects to be observable are realized in a three-level -system
interacting with a linearly polarized laser beam in the presence of a static
magnetic field. In low power regime, when all other nonlinear processes are
negligible, the light-induced Zeeman coherence cancels the resonant absorption
of the medium almost completely, but preserves the dispersion anomalous and
very high. As a result, a superluminal light pulse propagation can be observed
in the sense that the peak of the transmitted pulse exits the medium before the
peak of the incident pulse enters. There is no violation of causality and
energy conservation. Moreover, the superluminal effects are prominently
manifested in the reshaping of pulse, which is caused by the
intensity-dependent pulse velocity. Unlike the shock wave formation in a
nonlinear medium with normal dispersion, here, the self-steepening of the pulse
trailing edge takes place due to the fact that the more intense parts of the
pulse travel slower. The predicted effect can be easily observed in the well
known schemes employed for studying of nonlinear magneto-optical rotation. The
upper bound of sample length is found from the criterion that the pulse
self-steepening and group-advance time are observable without pulse distortion
caused by the group-velocity dispersion.Comment: 16 pages, 7 figure
Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking
A field-theoretic description of the critical behaviour of the weakly
disordered systems is given. Directly, for three- and two-dimensional systems a
renormalization analysis of the effective Hamiltonian of model with replica
symmetry breaking (RSB) potentials is carried out in the two-loop
approximation. For case with 1-step RSB the fixed points (FP's) corresponding
to stability of the various types of critical behaviour are identified with the
use of the Pade-Borel summation technique. Analysis of FP's has shown a
stability of the critical behaviour of the weakly disordered systems with
respect to RSB effects and realization of former scenario of disorder influence
on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the functions for arbitrary
dimension of syste
A Knob for Changing Light Propagation from Subluminal to Superluminal
We show how the application of a coupling field connecting the two lower
metastable states of a lambda-system can produce a variety of new results on
the propagation of a weak electromagnetic pulse. In principle the light
propagation can be changed from subluminal to superluminal. The negative group
index results from the regions of anomalous dispersion and gain in
susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.
Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light
We show how a medium, under the influece of a coherent control field which is
resonant or close to resonance to an appropriate atomic transition, can lead to
very strong asymmetries in the propagation of unpolarized light when the
direction of the magnetic field is reversed. We show how EIT can be used to
mimic effects occuring in natural systems and that EIT can produce very large
asymmetries as we use electric dipole allowed transitions. Using density matrix
calculations we present results for the breakdown of the magnetic field
reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys.
Rev.
Temperature Variation of Ultra Slow Light in a Cold Gas
A model is developed to explain the temperature dependence of the group
velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594
(1999)). The group velocity is quite sensitive to the change in the spatial
density. The inhomogeneity in the density and its temperature dependence are
primarily responsible for the observed behavior.Comment: 12 pages, 4 figure
Slow Light in Doppler Broadened Two level Systems
We show that the propagation of light in a Doppler broadened medium can be
slowed down considerably eventhough such medium exhibits very flat dispersion.
The slowing down is achieved by the application of a saturating counter
propagating beam that produces a hole in the inhomogeneous line shape. In
atomic vapors, we calculate group indices of the order of 10^3. The
calculations include all coherence effects.Comment: 6 pages, 5 figure
- …
