1,037 research outputs found

    Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions

    Full text link
    We have calculated the atomic electric dipole moments (EDMs) induced in ^{199}Hg, ^{129}Xe, ^{223}Rn, ^{225}Ra, and ^{239}Pu by their respective nuclear Schiff moments S. The results are (in units 10^{-17}S(e {fm}^{3})^{-1}e cm): d(^{199}Hg)=-2.8, d(^{129}Xe)=0.38, d(^{223}Rn)=3.3, d(^{225}Ra)=-8.5, d(^{239}Pu)=-11. We have also calculated corrections to the parity- and time-invariance-violating (P,T-odd) spin-axis interaction constant in TlF. These results are important for the interpretation of atomic and molecular experiments on EDMs in terms of fundamental P,T-odd parameters.Comment: 16 page

    Nonlinear optics via double dark resonances

    Get PDF
    Double dark resonances originate from a coherent perturbation of a system displaying electromagnetically induced transparency. We experimentally show and theoretically confirm that this leads to the possibility of extremely sharp resonances prevailing even in the presence of considerable Doppler broadening. A gas of 87Rb atoms is subjected to a strong drive laser and a weak probe laser and a radio frequency field, where the magnetic coupling between the Zeeman levels leads to nonlinear generation of a comb of sidebands.Comment: 6 pages, 9 figure

    Phase Coherence and Control of Stored Photonic Information

    Get PDF
    We report the demonstration of phase coherence and control for the recently developed "light storage" technique. Specifically, we use a pulsed magnetic field to vary the phase of atomic spin excitations which result from the deceleration and storing of a light pulse in warm Rb vapor. We then convert the spin excitations back into light and detect the resultant phase shift in an optical interferometric measurement. The coherent storage of photon states in matter is essential for the practical realization of many basic concepts in quantum information processing.Comment: 5 pages, 3 figures. Submitted to Phys. Rev. Let

    Superluminal optical pulse propagation in nonlinear coherent media

    Get PDF
    The propagation of light-pulse with negative group-velocity in a nonlinear medium is studied theoretically. We show that the necessary conditions for these effects to be observable are realized in a three-level Λ\Lambda-system interacting with a linearly polarized laser beam in the presence of a static magnetic field. In low power regime, when all other nonlinear processes are negligible, the light-induced Zeeman coherence cancels the resonant absorption of the medium almost completely, but preserves the dispersion anomalous and very high. As a result, a superluminal light pulse propagation can be observed in the sense that the peak of the transmitted pulse exits the medium before the peak of the incident pulse enters. There is no violation of causality and energy conservation. Moreover, the superluminal effects are prominently manifested in the reshaping of pulse, which is caused by the intensity-dependent pulse velocity. Unlike the shock wave formation in a nonlinear medium with normal dispersion, here, the self-steepening of the pulse trailing edge takes place due to the fact that the more intense parts of the pulse travel slower. The predicted effect can be easily observed in the well known schemes employed for studying of nonlinear magneto-optical rotation. The upper bound of sample length is found from the criterion that the pulse self-steepening and group-advance time are observable without pulse distortion caused by the group-velocity dispersion.Comment: 16 pages, 7 figure

    Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light

    Get PDF
    We show how a medium, under the influece of a coherent control field which is resonant or close to resonance to an appropriate atomic transition, can lead to very strong asymmetries in the propagation of unpolarized light when the direction of the magnetic field is reversed. We show how EIT can be used to mimic effects occuring in natural systems and that EIT can produce very large asymmetries as we use electric dipole allowed transitions. Using density matrix calculations we present results for the breakdown of the magnetic field reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys. Rev.

    Self-aligned via and trench for metal contact in III-V semiconductor devices

    Get PDF
    A semiconductor processing method for the formation of self-aligned via and trench structures in III-V semiconductor devices (in particular, on InP platform) is presented, together with fabrication results. As a template for such self-aligned via and trench formations in a surrounding polymer layer on a semiconductor device, we make use of a sacrificial layer that consists of either a Si O2 dielectric hard mask layer deposited on the device layers or a sacrificial semiconductor layer grown on top of the device epitaxial layers (e.g., InP on an InGaAs etch stop), both laid down on the device layers before patterning the device geometry. During the semiconductor device etching, the sacrificial layer is kept as a part of the patterned structures and is, therefore, perfectly self-aligned. By selectively removing the sacrificial layer surrounded by the polymer that is etched back within the thickness of the sacrificial layer, an opening such as a via and a trench is formed perfectly self-aligned on the device top area in the place of the sacrificial layer. This process yields a pristine semiconductor surface for metal contacts and fully utilizes the contact area available on the device top, no matter how small the device area is. This approach thus provides as low an Ohmic contact resistance as possible upon filling the via and the trench with metal deposition. The additional use of a thin Si3 N4 protecting layer surrounding the device sidewalls improves the robustness of the process without any undesired impact on the device electrical passivation (or on the optical mode characteristics if the device also includes a waveguide). This method offers metal contacts scalable to the device size, being limited only by the feasible device size itself. This method is also applicable to the fabrication of other III-V based integrated devices. © 2006 American Vacuum Society

    Spin Dependence of Heavy Quarkonium Production and Annihilation Rates: Complete Next-to-Next-to-Leading Logarithmic result

    Full text link
    The ratio of the photon mediated production or annihilation rates of spin triplet and spin singlet heavy quarkonium states is computed to the next-to-next-to-leading logarithmic accuracy within the nonrelativistic renormalization group approach. The result is presented in analytical form and applied to the phenomenology of ttˉt\bar{t}, bbˉb\bar{b} and ccˉc\bar{c} systems. The use of the nonrelativistic renormalization group considerably improves the behaviour of the perturbative expansion and is crucial for accurate theoretical analysis. For bottomonium decays we predict Γ(ηb(1S)γγ)=0.659±0.089(th.)0.018+0.019(δαs)±0.015(exp.)keV\Gamma(\eta_b(1S) \to \gamma\gamma)=0.659\pm 0.089 ({\rm th.}) {}^{+0.019}_{-0.018} (\delta \alpha_{\rm s})\pm 0.015 ({\rm exp.}) {\rm keV}. Our results question the accuracy of the existing extractions of the strong coupling constant from the bottomonium annihilation. As a by-product we obtain novel corrections to the ratio of the ortho- and parapositronium decay rates: the corrections of order α4ln2α\alpha^4\ln^2\alpha and α5ln3α\alpha^5\ln^3\alpha.Comment: Appendices A.4, A.5 and B correcte

    Electrically-reconfigurable integrated photonic switches

    Get PDF
    We report remotely electrically reconfigurable photonic switches that intimately integrate waveguide electroabsorption modulators with surface-normal photodiodes, avoiding conventional electronics. These switches exhibit full C-band wavelength conversion at 5 Gb/s and are remotely reconfigurable within tens of nanoseconds
    corecore