350 research outputs found

    Biology and significance of signalling pathways activated by IGF-II

    Get PDF
    Insulin-like growth factor-II (IGF-II) affects many aspects of cellular function through its ability to activate several different receptors and, consequently, numerous intracellular signalling molecules. Thus, IGF-II is a key regulator of normal foetal development and growth. However, abnormalities in IGF-II function are associated with cardiovascular disease and cancer. Here, we review the cellular mechanisms by which IGF-II's physiological and pathophysiological actions are exerted by discussing the involvement of the type 1 and type 2 IGF receptors (IGF1R and IGF2R), the insulin receptor and the downstream MAP kinase, PI-3 kinase and G-protein-coupled signalling pathways in mediating IGF-II stimulated cellular proliferation, survival, differentiation and migration. © 2011 Informa UK, Ltd

    A Teacher-Developed Process For Collaborative Professional Reflection

    Get PDF
    In Spring 2000, a group of five elementary school teachers met to investigate the nature of professional reflection and develop a process of collaborative reflection as productive professional development. These teachers’ beliefs that reflection is both necessary and valuable, coupled with their recommendation that it be collaborative, served as the basis of the process for collaborative reflection developed by the group and described in this paper. While designing the process, these teachers felt very strongly about how it should look and thus, they included many perceived requirements or ‘shoulds’ in their design. Interestingly, when the viability of these ‘shoulds’ were tested, the testing teachers wrestled with the process as designed, finding their naturally emerging reflection process to be more holistic than sequential. Yet, as these teachers struggled with the order of the designed process, they engaged in the tasks themselves, which propelled them through effective reflections

    Translational use of homing peptides: Tumor and placental targeting

    Get PDF
    HypothesisTissue-specific homing peptides have been shown to improve chemotherapeutic efficacy due to their trophism for tumor cells. Other sequences that selectively home to the placenta are providing new and safer therapeutics to treat complications in pregnancy. Our hypothesis is that the placental homing peptide RSGVAKS (RSG) may have binding affinity to cancer cells, and that insight can be gained into the binding mechanisms of RSG and the tumor homing peptide CGKRK to model membranes that mimic the primary lipid compositions of the respective cells.ExperimentsFollowing cell culture studies on the binding efficacy of the peptides on a breast cancer cell line, a systematic translational characterization is delivered using ellipsometry, Brewster angle microscopy and neutron reflectometry of the extents, structures, and dynamics of the interactions of the peptides with the model membranes on a Langmuir trough.FindingsWe start by revealing that RSG does indeed have binding affinity to breast cancer cells. The peptide is then shown to exhibit stronger interactions and greater penetration than CGKRK into both model membranes, combined with greater disruption to the lipid component. RSG also forms aggregates bound to the model membranes, yet both peptides bind to a greater extent to the placental than cancer model membranes. The results demonstrate the potential for varying local reservoirs of peptide within cell membranes that may influence receptor binding. The innovative nature of our findings motivates the urgent need for more studies involving multifaceted experimental platforms to explore the use of specific peptide sequences to home to different cellular targets

    The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences

    Get PDF
    Our understanding of the activity of cationic antimicrobial peptides (AMPs) has focused on well-characterized natural sequences, or limited sets of synthetic peptides designed de novo. We have undertaken a comprehensive investigation of the underlying primary structural features that give rise to the development of activity in AMPs. We consider a complete set of all possible peptides, up to 7 residues long, composed of positively charged arginine (R) and / or hydrophobic tryptophan (W), two features most commonly associated with activity. We found the shortest active peptides were 4 or 5 residues in length, and the overall landscapes of activity against gram-positive and gram-negative bacteria and a yeast were positively correlated. For all three organisms we found a single activity peak corresponding to sequences with around 40% R; the presence of adjacent W duplets and triplets also conferred greater activity. The mechanistic basis of these activities comprises a combination of lipid binding, particularly to negatively charged membranes, and additionally peptide aggregation, a mode of action previously uninvestigated for such peptides. The maximum specific antimicrobial activity appeared to occur in peptides of around 10 residues, suggesting ‘diminishing returns’ for developing larger peptides, when activity is considered per residue of peptide

    Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction

    Get PDF
    Failure of uterine vascular transformation is associated with pregnancy complications including Intra Uterine Growth Restriction (IUGR). The decidua and its immune cell populations play a key role in the earliest stages of this process. Here we investigate the hypothesis that abnormal decidualization and failure of maternal immune tolerance in the second trimester may underlie the uteroplacental pathology of IUGR. Placental bed biopsies were obtained from women undergoing elective caesarian delivery of a healthy term pregnancy, an IUGR pregnancy or a pregnancy complicated by both IUGR and preeclampsia. Decidual tissues were also collected from second trimester terminations from women with either normal or high uterine artery Doppler pulsatile index (PI). Immunohistochemical image analysis and flow cytometry were used to quantify vascular remodeling, decidual leukocytes and decidual status in cases vs. controls. Biopsies from pregnancies complicated by severe IUGR with a high uterine artery pulsatile index (PI) displayed a lack of: myometrial vascular transformation, interstitial, and endovascular extravillous trophoblast (EVT) invasion, and a lower number of maternal leukocytes. Apoptotic mural EVT were observed in association with mature dendritic cells and T cells in the IUGR samples. Second trimester pregnancies with high uterine artery PI displayed a higher incidence of small for gestational age fetuses; a skewed decidual immunology with higher numbers of; CD8 T cells, mature CD83 dendritic cells and lymphatic vessels that were packed with decidual leukocytes. The decidual stromal cells (DSCs) failed to differentiate into the large secretory DSC in these cases, remaining small and cuboidal and expressing lower levels of the nuclear progesterone receptor isoform B, and DSC markers Insulin Growth Factor Binding protein-1 (IGFBP-1) and CD10 as compared to controls. This study shows that defective progesterone mediated decidualization and a hostile maternal immune response against the invading endovascular EVT contribute to the failure of uterovascular remodeling in IUGR pregnancies

    Clinical Features, Treatment, and Outcome of HIV-Associated Immune Thrombocytopenia in the HAART Era

    Get PDF
    The characteristics of HIV-associated ITP were documented prior to the HAART era, and the optimal treatment beyond HAART is unknown. We performed a review of patients with HIV-associated ITP and at least one platelet count <20 × 109/L since January 1996. Of 5290 patients in the BC Centre for Excellence in HIV/AIDS database, 31 (0.6%) had an ITP diagnosis and platelet count <20 × 109/L. Initial ITP treatment included IVIG, n = 12; steroids, n = 10; anti-RhD, n = 8; HAART, n = 3. Sixteen patients achieved response and nine patients achieved complete response according to the International Working Group criteria. Median time to response was 14 days. Platelet response was not significantly associated with treatment received, but complete response was lower in patients with a history of injection drug use. Complications of ITP treatment occurred in two patients and there were four unrelated deaths. At a median followup of 48 months, 22 patients (71%) required secondary ITP treatment. This is to our knowledge the largest series of severe HIV-associated ITP reported in the HAART era. Although most patients achieved a safe platelet count with primary ITP treatment, nearly all required retreatment for ITP recurrence. New approaches to the treatment of severe ITP in this population are needed

    The lexicon of antimicrobial peptides: a complete set of arginine and tryptophan sequences

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-08-09, accepted 2021-03-29, registration 2021-04-24, pub-electronic 2021-05-21, online 2021-05-21, collection 2021-12Publication status: PublishedFunder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); doi: https://doi.org/10.13039/501100000268; Grant(s): BB/M011208/1Abstract: Our understanding of the activity of cationic antimicrobial peptides (AMPs) has focused on well-characterized natural sequences, or limited sets of synthetic peptides designed de novo. We have undertaken a comprehensive investigation of the underlying primary structural features that give rise to the development of activity in AMPs. We consider a complete set of all possible peptides, up to 7 residues long, composed of positively charged arginine (R) and / or hydrophobic tryptophan (W), two features most commonly associated with activity. We found the shortest active peptides were 4 or 5 residues in length, and the overall landscapes of activity against gram-positive and gram-negative bacteria and a yeast were positively correlated. For all three organisms we found a single activity peak corresponding to sequences with around 40% R; the presence of adjacent W duplets and triplets also conferred greater activity. The mechanistic basis of these activities comprises a combination of lipid binding, particularly to negatively charged membranes, and additionally peptide aggregation, a mode of action previously uninvestigated for such peptides. The maximum specific antimicrobial activity appeared to occur in peptides of around 10 residues, suggesting ‘diminishing returns’ for developing larger peptides, when activity is considered per residue of peptide

    Targeted Delivery of Epidermal Growth Factor to the Human Placenta to Treat Fetal Growth Restriction

    Get PDF
    Placental dysfunction is the underlying cause of pregnancy complications such as fetal growth restriction (FGR) and pre-eclampsia. No therapies are available to treat a poorly functioning placenta, primarily due to the risks of adverse side effects in both the mother and the fetus resulting from systemic drug delivery. The use of targeted liposomes to selectively deliver payloads to the placenta has the potential to overcome these issues. In this study, we assessed the safety and efficacy of epidermal growth factor (EGF)-loaded, peptide-decorated liposomes to improve different aspects of placental function, using tissue from healthy control pregnancies at term, and pregnancies complicated by FGR. Phage screening identified a peptide sequence, CGPSARAPC (GPS), which selectively homed to mouse placentas in vivo, and bound to the outer syncytiotrophoblast layer of human placental explants ex vivo. GPS-decorated liposomes were prepared containing PBS or EGF (50–100 ng/mL), and placental explants were cultured with liposomes for up to 48 h. Undecorated and GPS-decorated liposomes containing PBS did not affect the basal rate of amino acid transport, human chorionic gonadotropin (hCG) release or cell turnover in placental explants from healthy controls. GPS-decorated liposomes containing EGF significantly increased amino acid transporter activity in healthy control explants, but not in placental explants from women with FGR. hCG secretion and cell turnover were unaffected by EGF delivery; however, differential activation of downstream protein kinases was observed when EGF was delivered via GPS-decorated vs. undecorated liposomes. These data indicate that targeted liposomes represent a safe and useful tool for the development of new therapies for placental dysfunction, recapitulating the effects of free EGF
    corecore