2,405 research outputs found

    Response to ‘Protected areas and climate change Reflections from a practitioner's perspective

    No full text
    Cliquet et al. 1 provide a thought-provoking analysis of the challenges posed to the EU's protected areas by climate change. This paper seeks to build on some of the perspectives they brought to what is a highly challenging area of nature conservation law, policy and practice. While there is much to support in their analysis of the relationships between protected areas and climate change, there are two key strands we seek to develop further, based on the RSPB's experience of this area of nature conservation policy and practice: first, is the ecological model for adapting to climate change and second, the legal framework provided by the Birds2 and Habitats3 Directives (the Nature Directives) as it relates to the delivery of such adaptive actions

    Ecosystem services in cities: towards the international legal protection of ecosystem services in urban environments

    Get PDF
    Biodiversity provides many ecosystem services in cities that are beneficial to human well-being including adaptation to the effects of climate change and positive effects of nature on human health. Rapid urbanization however is causing an adverse impact on biodiversity and the ecosystem services they provide. Protecting and restoring urban biodiversity and ecosystem services can increase human well-being of the rapidly increasing urban population. Today, however, the international biodiversity conservation practice mainly focuses on rural areas, and not on urban conservation and restoration. Within city scale, there are several opportunities to green urban living, such as green infrastructure and urban parks and nature reserves. This paper investigates the current scientific practices for promoting and protecting ecosystem services in urban areas. Secondly, the authors review and assess the legally binding instruments on biodiversity at the international and EU level in order to see if there are sufficient existing mechanisms for protection of ecosystem services in urban areas. Thirdly, the paper elaborates on the Aichi Targets in order to explore whether or not these targets are enough to facilitate the protection and enhancement of ecosystem services in urban areas as swiftly as they are needed

    Work in progress: a novel method of creating an academic content repository

    Get PDF
    This paper outlines a project aimed at addressing the issue of the scalability of online academic support. This project is being run during the Autumn semester at the University of Southern Queensland (USQ) Toowoomba Australia, in conjunction with the Australian Digital Futures Institute. The study attached to the project will use Design-Based Research to evaluate the effectiveness of a simple, but innovative academic content and metadata creation tool referred to as Academic Assist. Academic Assist has been recently developed at USQ as a plug-in block for the moodle-based Learning Management System employed at USQ for its several hundred online subjects. The pilot project and associated study now extends over nine subjects, including three consecutive subjects in computer engineering; and covers faculties of Engineering, Education, Business, Science and Arts. Some preliminary results are presented here. Complete results of the study including acceptance surveys, expert reviews and usage statistics will be presented at FIE 2009

    A Framework for Establishing Restoration Goals for Contaminated Ecosystems

    Get PDF
    This article represents 1 of 6 articles in the special series “Restoration of Impaired Ecosystems: An Ounce of Prevention or a Pound of Cure?” The articles result from a Technical Workshop organized by SETAC and the Society for Ecological Restoration, held June 2014 in Jackson, Wyoming, that focused on advancing the practice of restoring ecosystems that have been contaminated or impaired from industrial activities.As natural resources become increasingly limited, the value of restoring contaminated sites, both terrestrial and aquatic, becomes increasingly apparent. Traditionally, goals for remediation have been set before any consideration of goals for ecological restoration. The goals for remediation have focused on removing or limiting contamination whereas restoration goals have targeted the ultimate end use. Here, we present a framework for developing a comprehensive set of achievable goals for ecological restoration of contaminated sites to be used in concert with determining goals for remediation. This framework was developed during a Society of Environmental Toxicology and Chemistry (SETAC) and Society of Ecological Restoration (SER) cosponsored workshop that brought together experts from multiple countries. Although most members were from North America, this framework is designed for use internationally. We discuss the integration of establishing goals for both contaminant remediation and overall restoration, and the need to include both the restoration of ecological and socio-cultural-economic value in the context of contaminated sites. Although recognizing that in some countries there may be regulatory issues associated with contaminants and clean up, landscape setting and social drivers can inform the restoration goals. We provide a decision tree support tool to guide the establishment of restoration goals for contaminated ecosystems. The overall intent of this decision tree is to provide a framework for goal setting and to identify outcomes achievable given the contamination present at a site. Integr Environ Assess Manag 2016;12:264–272. 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC

    Impact of rapid urban expansion on green space structure

    Get PDF
    Rapid urban expansion has had a significant impact on green space structure. A wide variety of modelling approaches have been tested to simulate urban expansion; however, the effectiveness of simulations of the spatial structure of urban expansion remains unexplored. This study aims to model and predict urban expansion in three cities (Kuala Lumpur, Metro Manila and Jakarta), all experiencing rapid urban expansion, and to identify which are the main drivers, including spatial planning, in the resulting spatial patterns. Land Change Modeller (LCM)-Markov Chain models were used, parameterised on changes observed between 1988/1989 and 1999 and verified with the urban form observed for 2014. These models were then used to simulate urban expansion for the year 2030. The spatial structure of the simulated 2030 land use was then compared with the 2030 master plan for each city using spatial metrics. LCM-Markov Chain models proved to be a suitable method for simulating the development of future land use. There were also important differences in the projected spatial structure for 2030 when compared to the planned development in each city; substantive differences in the size, density, distance, shape and spatial pattern. Evidence suggests that these spatial patterns are influenced by the forms of rapid urban expansion experienced in these cities and respective master planning policies of the municipalities of the cities. The use of integrated simulation modelling and landscape ecology analytics supplies significant insights into the evolution of the spatial structure of urban expansion and identifies constraints and informs intervention for spatial planning and policies in cities

    Influence of innate sludge factors and ambient environmental parameters in biosolids storage on indicator bacteria survival: A review

    Get PDF
    The potential health risks associated with sludge cake application to agricultural land are managed by controlling the levels of Escherichia coli (E. coli) bacteria which indicate the risk of pathogen transfer. Analyses undertaken following post-digestion sludge dewatering have shown unpredictable levels of E. coli increase in stored sludge cake. Presently there is limited understanding on environmental parameters controlling the indicator bacteria density in storage and the contributory effects dewatering may have. This review aims to establish the state of current knowledge on innate and environmental factors influencing E. coli dynamics and survival in biosolids. A key factor identified is the effect of mechanical dewatering processes, which transform the sludge matrix environmental conditions through the increased availability of growth factors (e.g. nutrient and oxygen). Examples of storage practices from the agricultural and food industries are also discussed as successful methods to inhibit bacterial growth and survival, which could be extrapolated to the biosolids sector to regulate E. coli concentrations

    A simple method for determination of fine resolution urban form patterns with distinct thermal properties using class-level landscape metrics

    Get PDF
    Context Relationships between land surface temperature (LST) and spatial configuration of urban form described by landscape metrics so far have been investigated with coarse resolution LST imagery within artificially superimposed land divisions. Citywide micro-scale observations are needed to better inform urban design and help mitigate urban heat island effects in warming climates. Objectives The primary objective was to sub-divide an existing high-resolution land cover (LC) map into groups of patches with distinct spatial and thermal properties suitable for urban LST studies relevant to micro-scales. The secondary objective was to provide insights into the optimal analytical unit size to calculate class-level landscape metrics strongly correlated with LST at 2 m spatial resolution. Methods A two-tiered unsupervised k-means clustering analysis was deployed to derive spatially distinct groups of patches of each major LC class followed by further subdivisions into hottest, coldest and intermediary sub-classes, making use of high resolution class-level landscape metrics strongly correlated with LST. Results Aggregation class-level landscape metrics were consistently correlated with LST for green and grey LC classes and the optimal search window size for their calculations was 100 m for LST at 2 m resolution. ANOVA indicated that all Tier 1 and most of Tier 2 subdivisions were thermally and spatially different. Conclusions The two-tiered k-means clustering approach was successful at depicting subdivisions of major LC classes with distinct spatial configuration and thermal properties, especially at a broader Tier 1 level. Further research into spatial configuration of LC patches with similar spatial but different thermal properties is required

    Responses of natural microorganisms to land reclamation and applications of functional microorganisms in biorestoration of coal mining area

    Get PDF
    Extensive coal mining causes significant ecological and environmental impacts on the local ecosystem, especially on the terrestrial ecosystem. Mining activities induce the degradation of topsoil physico–chemical characteristics and the succession of soil microbial communities. The soil microbial community is sensitive to soil disturbance and restoration practices, being significant in soil reconstruction and land restoration. Microbes could be effective instruments to restore or reclaim disturbed terrestrial ecosystems and indispensable, unambiguous, indicators to assess reclaimed soils. In the present review, we aimed to provide insight into the effects of mining and subsequent land reclamation on soil microorganisms and the importance and application of microorganisms in the reclamation process. We address changes in the diversity and structure of the soil microbial community after reclamation and discuss the main driving factors of the community. We hypothesize that there is a discernible pattern or regularity in the variation of microbial community composition during the process of restoration succession. By employing the life strategy concept, the study attempts to identify and understand how microbial communities evolve during land reclamation. Land reclamation could improve the nutrients in the soil while increasing the proportion of saprotrophic microorganisms. In community succession, vegetation, soil properties, and reclamation time are key determining factors. Whereas bacteria, fungi, and archaea showed different responses to these factors, as they responded differently to varied soil environments, nutrition, and plants, and occupied different biological niches. Finally, we describe the applications of microorganisms as land reclamation monitors or promoters. This knowledge and understanding can provide comprehensive insight into the soil health condition and strong support for forecasting and decision-making in mine land restoration

    Ecological connectivity networks in rapidly expanding cities

    Get PDF
    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus) and Yellow-vented bulbul (Pycnonotus goiavier) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning

    Using Bayesian Belief Networks to assess the influence of landscape connectivity on ecosystem service trade-offs and synergies in urban landscapes in the UK

    Get PDF
    Context Landscape connectivity is assumed to influence ecosystem service (ES) trade-offs and synergies. However, empirical studies of the effect of landscape connectivity on ES trade-offs and synergies are limited, especially in urban areas where the interactions between patterns and processes are complex. Objectives The objectives of this study were to use a Bayesian Belief Network approach to (1) assess whether functional connectivity drives ES trade-offs and synergies in urban areas and (2) assess the influence of connectivity on the supply of ESs. Methods We used circuit theory to model urban bird flow of P. major and C. caeruleus at a 2 m spatial resolution in Bedford, Luton and Milton Keynes, UK, and Bayesian Belief Networks (BBNs) to assess the sensitivity of ES trade-offs and synergies model outputs to landscape and patch structural characteristics (patch area, connectivity and bird species abundance). Results We found that functional connectivity was the most influential variable in determining two of three ES trade-offs and synergies. Patch area and connectivity exerted a strong influence on ES trade-offs and synergies. Low patch area and low to moderately low connectivity were associated with high levels of ES trade-offs and synergies. Conclusions This study demonstrates that landscape connectivity is an influential determinant of ES trade-offs and synergies and supports the conviction that larger and better-connected habitat patches increase ES provision. A BBN approach is proposed as a feasible method of ES trade-off and synergy prediction in complex landscapes. Our findings can prove to be informative for urban ES management
    corecore