1,234 research outputs found

    Short chain fatty acid production from mycoprotein and mycoprotein fibre in an in vitro fermentation model

    Get PDF
    Dietary mycoprotein (marketed as QuornTM) has many health benefits, including reductions in energy intake. The majority of studies evaluating mycoprotein focus on the protein content and very few consider the fibre content. Fibre consumption is also associated with decreased energy intake, which is partly attributed to short chain fatty acids (SCFAs) from fibre fermentation by colonic bacteria. To study the SCFA-producing capability of mycoprotein, in vitro batch fermentations were conducted, and SCFA production compared with that from extracted mycoprotein fibre, oligofructose (OF), rhamnose, and laminarin. Mycoprotein and mycoprotein fibre were both fermentable, resulting in a total SCFA production of 24.9 (1.7) and 61.2 (15.7) mmol/L, respectively. OF led to a significantly higher proportion of acetate compared to all other substrates tested (92.6 (2.8)%, p < 0.01). Rhamnose generated the highest proportion of propionate (45.3 (2.0)%, p < 0.01), although mycoprotein and mycoprotein fibre yielded a higher proportion of propionate compared with OF and laminarin. Butyrate proportion was the highest with laminarin (28.0 (10.0)although mycoprotein fibre led to a significantly higher proportion than OF (p < 0.01). Mycoprotein is a valuable source of dietary protein, but its fibre content is also of interest. Further evaluation of the potential roles of the fibre content of mycoprotein is required

    Starch hydrogels as targeted colonic drug delivery vehicles

    Get PDF
    Targeted colonic drug delivery systems are needed for the treatment of endemic colorectal pathologies, such as Crohn's disease, ulcerative colitis, and colorectal cancer. These drug delivery vehicles are difficult to formulate, as they need to remain structurally intact whilst navigating a wide range of physiological conditions across the upper gastrointestinal tract. In this work we show how starch hydrogel bulk structural and molecular level parameters influence their properties as drug delivery platforms. The in vitro protocols mimic in vivo conditions, accounting for physiological concentrations of gastrointestinal hydrolytic enzymes and salts. The structural changes starch gels undergo along the entire length of the human gastrointestinal tract have been quantified, and related to the materials' drug release kinetics for three different drug molecules, and interactions with the large intestinal microbiota. It has been demonstrated how one can modify their choice of starch in order to fine tune its corresponding hydrogel's pharmacokinetic profile

    Evidence for the Use of Triage, Respiratory Isolation, and Effective Treatment to Reduce the Transmission of Mycobacterium Tuberculosis in Healthcare Settings: A Systematic Review.

    Get PDF
    Evidence is limited for infection prevention and control (IPC) measures reducing Mycobacterium tuberculosis (MTB) transmission in health facilities. This systematic review, 1 of 7 commissioned by the World Health Organization to inform the 2019 update of global tuberculosis (TB) IPC guidelines, asked: do triage and/or isolation and/or effective treatment of TB disease reduce MTB transmission in healthcare settings? Of 25 included articles, 19 reported latent TB infection (LTBI) incidence in healthcare workers (HCWs; absolute risk reductions 1%-21%); 5 reported TB disease incidence in HCWs (no/slight [high TB burden] or moderate [low burden] reduction) and 2 in human immunodeficiency virus-positive in-patients (6%-29% reduction). In total, 23/25 studies implemented multiple IPC measures; effects of individual measures could not be disaggregated. Packages of IPC measures appeared to reduce MTB transmission, but evidence for effectiveness of triage, isolation, or effective treatment, alone or in combination, was indirect and low quality. Harmonizing study designs and reporting frameworks will permit formal data syntheses and facilitate policy making

    Psyllium reduces inulin-induced colonic gas production in IBS:MRI and in vitro fermentation studies

    Get PDF
    Objective Health-promoting dietary fibre including inulin often triggers gastrointestinal symptoms in patients with IBS, limiting their intake. Our aim was to test if coadministering psyllium with inulin would reduce gas production. Design A randomised, four-period, four-treatment, placebo-controlled, crossover trial in 19 patients with IBS. Subjects ingested a 500 mL test drink containing either inulin 20 g, psyllium 20 g, inulin 20 g+ psyllium 20 g or dextrose 20 g (placebo). Breath hydrogen was measured every 30 min with MRI scans hourly for 6 hours. Faecal samples from a subset of the patients with IBS were tested using an in vitro fermentation model. Primary endpoint was colonic gas assessed by MRI. Results Colonic gas rose steadily from 0 to 6 hours, with inulin causing the greatest rise, median (IQR) AUC(0-360 min) 3145 (848-6502) mL·min. This was significantly reduced with inulin and psyllium coadministration to 618 (62-2345) mL·min (p=0.02), not significantly different from placebo. Colonic volumes AUC(0-360 min) were significantly larger than placebo for both inulin (p=0.002) and inulin and psyllium coadministration (p=0.005). Breath hydrogen rose significantly from 120 min after inulin but not psyllium; coadministration of psyllium with inulin delayed and reduced the maximum increase, AUC(0-360 min) from 7230 (3255-17910) ppm·hour to 1035 (360-4320) ppm·hour, p=0.007. Fermentation in vitro produced more gas with inulin than psyllium. Combining psyllium with inulin did not reduce gas production. Conclusions Psyllium reduced inulin-related gas production in patients with IBS but does not directly inhibit fermentation. Whether coadministration with psyllium increases the tolerability of prebiotics in IBS warrants further study.</p

    The impact of psyllium gelation behaviour on in vitro colonic fermentation properties

    Get PDF
    Psyllium is a viscous, gel forming fibre with properties that have led it to be used for alleviating gastrointestinal discomfort. We have used previously identified fractions of psyllium with differing flow properties. Fraction 1 (F1) forms a non-gelling solution containing rhamnose. galactose, and arabinose. Fraction 2 (F2) forms a fluid-like gel containing mainly xylose and arabinose, Fraction 3 (F3) has almost identical monosaccharide and linkage composition to F2, but forms an insoluble, self-supporting gel. We performed in vitro batch fermentation experiments seeded with human stool. Metabolomics were performed using 1H NMR, and FISH with calcofluor white and direct red 23 were used to visualise the gels after in vitro fermentation of the fractions. The total amount of gas and short chain fatty acid produced was significantly higher for F1, compared to F2 and F3. F3 gas production was significantly lower than F2, but metabolite production between F2 and F3 did not differ. All fractions preferentially lead to the production of propionate instead of butyrate and were produced in the ratio of 58:35:7, 54:38:8, and 61:33:6 (acetate: propionate: butyrate) for F1, F2, and F3 respectively. Microscopy showed differences in how the fractions broke down and demonstrated the localisation of bacteria on the outer edge of each fraction. These results suggest that for these psyllium fractions the structure is a key factor that determines fermentability. Flow properties may play a role in gas production, suggesting directions for future investigation. Isolated fractions may have clinical benefit above that of unrefined psyllium powder aiding in the treatment of gastrointestinal discomfort

    β-alanine supplementation improves in-vivo fresh and fatigued skeletal muscle relaxation speed

    Get PDF
    Purpose: In fresh muscle, supplementation with the rate-limiting precursor of carnosine, β-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. Methods: Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day−1 of BA (n=12) or placebo (PLA; n=11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. Results: BA supplementation had no effect on voluntary or electrically  evoked isometric force production, or twitch electromechanical delay and time-to-peak tension. There was a significant decline in muscle HRT in fresh and fatigued muscle conditions  during both resting (3±13%; 19±26%) and potentiated (1±15%; 2±20%) twitch contractions. Conclusions: The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. Trial registration The trial is registered with Clinicaltrials.gov, ID number NCT02819505

    The Impact of Contact Isolation on the Quality of Inpatient Hospital Care

    Get PDF
    Background: Contact Isolation is a common hospital infection prevention method that may improve infectious outcomes but may also hinder healthcare delivery. Methods: To evaluate the impact of Contact Isolation on compliance with individual and composite process of care quality measures, we formed four retrospective diagnosis-based cohorts from a 662-bed tertiary-care medical center. Each cohor
    • …
    corecore