3,514 research outputs found

    The God-Idea of the Japanese.

    Get PDF

    Systematic review of the effects of bisphosphonates on bone density and fracture incidence in childhood acute lymphoblastic leukaemia

    Get PDF
    Skeletal fragility is a common complication of childhood acute lymphoblastic leukaemia (ALL) but the impact of bisphosphonate therapy on bone mass and fracture is unclear. We aim to conduct a systematic review to evaluate the effects of bisphosphonates on bone mineral density (BMD) and fracture incidence in children with ALL. EMBASE, Medline and the Cochrane Library were thoroughly searched by two researchers. Inclusion criteria was any child under the age of 18 years with a diagnosis of ALL, who had received any bisphosphonate treatment and had serial measurements of bone density performed thereafter. All primary research studies of any study design, excluding case reports, were included. Ten full text papers were identified with two exclusively meeting the inclusion criteria. Both studies administered bisphosphonates to children receiving maintenance chemotherapy for varying durations. Bone density was assessed at regular intervals by dual x-ray absorptiometry (DXA). The majority of participants had an improvement in bone density at the end of each study. However, no size adjustment of DXA data was performed. Limited information on fracture occurrence was provided by one study but did not include routine screening for vertebral fractures. This systematic review identified that there is insufficient evidence to support routine use of prophylactic bisphosphonate therapy in childhood ALL for prevention of fracture and improvement of bone mass. Future well-designed clinical trials in those at highest risk of fractures in ALL are now needed

    Seabed Resuspension in the Chesapeake Bay: Implications for Biogeochemical Cycling and Hypoxia

    Get PDF
    Sediment processes, including resuspension and transport, affect water quality in estuaries by altering light attenuation, primary productivity, and organic matter remineralization, which then influence oxygen and nitrogen dynamics. The relative importance of these processes on oxygen and nitrogen dynamics varies in space and time due to multiple factors and is difficult to measure, however, motivating a modeling approach to quantify how sediment resuspension and transport affect estuarine biogeochemistry. Results from a coupled hydrodynamic-sediment transport-biogeochemical model of the Chesapeake Bay for the summers of 2002 and 2003 showed that resuspension increased light attenuation, especially in the northernmost portion of the Bay, shifting primary production downstream. Resuspension also increased remineralization in the central Bay, which experienced larger organic matter concentrations due to the downstream shift in primary productivity and estuarine circulation. As a result, oxygen decreased and ammonium increased throughout the Bay in the bottom portion of the water column, due to reduced photosynthesis in the northernmost portion of the Bay and increased remineralization in the central Bay. Averaged over the channel, resuspension decreased oxygen by similar to 25% and increased ammonium by similar to 50% for the bottom water column. Changes due to resuspension were of the same order of magnitude as, and generally exceeded, short-term variations within individual summers, as well as interannual variability between 2002 and 2003, which were wet and dry years, respectively. Our results quantify the degree to which sediment resuspension and transport affect biogeochemistry, and provide insight into how coastal systems may respond to management efforts and environmental changes. Model datasets are available through W&M ScholarWorks : https://doi.org/10.25773/hamz-zc5

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    Superluminal optical pulse propagation in nonlinear coherent media

    Get PDF
    The propagation of light-pulse with negative group-velocity in a nonlinear medium is studied theoretically. We show that the necessary conditions for these effects to be observable are realized in a three-level Λ\Lambda-system interacting with a linearly polarized laser beam in the presence of a static magnetic field. In low power regime, when all other nonlinear processes are negligible, the light-induced Zeeman coherence cancels the resonant absorption of the medium almost completely, but preserves the dispersion anomalous and very high. As a result, a superluminal light pulse propagation can be observed in the sense that the peak of the transmitted pulse exits the medium before the peak of the incident pulse enters. There is no violation of causality and energy conservation. Moreover, the superluminal effects are prominently manifested in the reshaping of pulse, which is caused by the intensity-dependent pulse velocity. Unlike the shock wave formation in a nonlinear medium with normal dispersion, here, the self-steepening of the pulse trailing edge takes place due to the fact that the more intense parts of the pulse travel slower. The predicted effect can be easily observed in the well known schemes employed for studying of nonlinear magneto-optical rotation. The upper bound of sample length is found from the criterion that the pulse self-steepening and group-advance time are observable without pulse distortion caused by the group-velocity dispersion.Comment: 16 pages, 7 figure

    Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps

    Full text link
    An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jumpwise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation parameter takes its maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200
    • …
    corecore