11,332 research outputs found

    Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization

    Full text link
    The spectra of the first galaxies and quasars in the Universe should be strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by neutral hydrogen (HI) in the intervening intergalactic medium. However, the Lyman-alpha line photons emitted by these sources are not eliminated but rather scatter until they redshift out of resonance and escape due to the Hubble expansion of the surrounding intergalactic HI. We calculate the resulting brightness distribution and the spectral shape of the diffuse Lyman-alpha line emission around high redshift sources, before the intergalactic medium was reionized. Typically, the Lyman-alpha photons emitted by a source at z=10 scatter over a characteristic angular radius of order 15 arcseconds around the source and compose a line which is broadened and redshifted by about a thousand km/s relative to the source. The scattered photons are highly polarized. Detection of the diffuse Lyman-alpha halos around high redshift sources would provide a unique tool for probing the neutral intergalactic medium before the epoch of reionization. On sufficiently large scales where the Hubble flow is smooth and the gas is neutral, the Lyman-alpha brightness distribution can be used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3 corrected; new section added on the detectability of Lyman alpha halos; conclusions update

    Cometary Astrometry

    Get PDF
    Modern techniques for making cometary astrometric observations, reducing these observations, using accurate reference star catalogs, and computing precise orbits and ephemerides are discussed in detail and recommendations and suggestions are given in each area

    (Un)Structuring for the Next Generation: New Possibilities for Library Data with NoSQL

    Get PDF
    For many years, libraries have relied upon relational databases (RDBMS) to store, manipulate, and query various types of data, and this database model works extremely well when data are highly structured. As the data become more complex, however, the relational database model strains under the burden of maintaining complex joins, which can decrease a database\u27s performance and limit its functionality. Furthermore, data are not always best represented in the RDBMS\u27s flat, tabular format. Library data often require flexibility and extensibility to accommodate the increasing volume and variety of library resources and metadata. To address these issues, transforming the underlying structure of data will be as important as transforming the data itself. NoSQL offers an alternative model for efficiently managing dynamic data

    Parasite-Drag Measurements of Five Helicopter Rotor Hubs

    Get PDF
    An investigation has been conducted in the Langley full-scale tunnel to determine the parasite drag of five production-type helicopter rotor hubs. Some simple fairing arrangements were attempted in an effort to reduce the hub drag. The results indicate that, within the range of the tests, changes in angle of attack, hub rotational speed, and forward speed generally had only a small effect on the equivalent flat-plate area representing parasite drag. The drag coefficients of the basic hubs, based on projected hub frontal area, increased with hub area and varied from 0.5 to 0.76 for the hubs tested

    The phase-dependent Infrared brightness of the extrasolar planet upsilon Andromedae b

    Full text link
    The star upsilon Andromeda is orbited by three known planets, the innermost of which has an orbital period of 4.617 days and a mass at least 0.69 that of Jupiter. This planet is close enough to its host star that the radiation it absorbs overwhelms its internal heat losses. Here we present the 24 micron light curve of this system, obtained with the Spitzer Space Telescope. It shows a clear variation in phase with the orbital motion of the innermost planet. This is the first demonstration that such planets possess distinct hot substellar (day) and cold antistellar (night) faces.Comment: "Director's cut" of paper to appear in Science, 27 October, 200

    A simple method for detection of mitochondrial DNA polymorphisms

    Get PDF
    Polymorphisms were identified in mtDNA of Heterobasidion annosum by digesting total genomic DNA with HaeIII, CfoI, or MspI, which recognize the restriction sites GGCC, GCGC, and CCGG, respectively. Most DNA was digested to fragments of less than 2 kb, while AT-rich fragments of 1.7 to 17 kb stood out as bands of uniform intensity after ethidium bromide staining. These fragments hybridized to mtDNA probes and were inherited in a uniparental fashion

    A Spitzer Five-Band Analysis of the Jupiter-Sized Planet TrES-1

    Get PDF
    With an equilibrium temperature of 1200 K, TrES-1 is one of the coolest hot Jupiters observed by {\Spitzer}. It was also the first planet discovered by any transit survey and one of the first exoplanets from which thermal emission was directly observed. We analyzed all {\Spitzer} eclipse and transit data for TrES-1 and obtained its eclipse depths and brightness temperatures in the 3.6 {\micron} (0.083 % {\pm} 0.024 %, 1270 {\pm} 110 K), 4.5 {\micron} (0.094 % {\pm} 0.024 %, 1126 {\pm} 90 K), 5.8 {\micron} (0.162 % {\pm} 0.042 %, 1205 {\pm} 130 K), 8.0 {\micron} (0.213 % {\pm} 0.042 %, 1190 {\pm} 130 K), and 16 {\micron} (0.33 % {\pm} 0.12 %, 1270 {\pm} 310 K) bands. The eclipse depths can be explained, within 1σ\sigma errors, by a standard atmospheric model with solar abundance composition in chemical equilibrium, with or without a thermal inversion. The combined analysis of the transit, eclipse, and radial-velocity ephemerides gives an eccentricity e=0.0330.031+0.015e = 0.033^{+0.015}_{-0.031}, consistent with a circular orbit. Since TrES-1's eclipses have low signal-to-noise ratios, we implemented optimal photometry and differential-evolution Markov-chain Monte Carlo (MCMC) algorithms in our Photometry for Orbits, Eclipses, and Transits (POET) pipeline. Benefits include higher photometric precision and \sim10 times faster MCMC convergence, with better exploration of the phase space and no manual parameter tuning.Comment: 17 pages, Accepted for publication in Ap

    Total Molecular Gas Masses of Planck - Herschel Selected Strongly Lensed Hyper Luminous Infrared Galaxies

    Get PDF
    We report the detection of CO(1 - 0) line emission from seven Planck and Herschel selected hyper luminous (LIR(8-1000um) > 10^13Lsun) infrared galaxies with the Green Bank Telescope (GBT). CO(1 - 0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 10^(13-14) Lsun), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33 - 3.26). The CO(1 - 0) lines show similar profiles as compared to Jup = 2 -4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 (pm 22) Lsun(K km s^-1 pc^-2)^-1 compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of = 0.93 (2 sources), = 0.34 (5 sources), and = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as uMH2 = (0.9 - 27.2) x 10^11(alphaCO/0.8)Msun, where u is the magnification factor and alphaCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times are, on average, tau = 80 Myr, which reveal vigorous starburst activity, and contrast the Gyr depletion timescales observed in local, normal star-forming galaxies.Comment: published in MNRAS, 9pages, 5fig
    corecore